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Abstract

The main goal of this thesis is to investigate the periodic charac-
ter, invariant intervals, oscillation and global stability and other new
results of all positive solutions of the equation

xn+1 =
α+ βxn

A+Bxn + Cxn−k
, n = 0, 1, 2, ...

where the parameters α, β, A, B and C are non-negative real num-
bers with at least one parameter is non zero and the initial conditions
x−k, x−k+1, ..., x−1, x0 are non-negative real numbers with the solution
is defined and k ∈ {1, 2, 3, ...}.

We give a detailed description of the semi-cycles of solutions, and
determine conditions under which the equilibrium points are globally
asymptotically stable.

In particular, our monograph is a generalization of the rational
difference equation that was investigated in [15].
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Introduction

The dynamical system is the study of phenomena that evolve in space and/
or time by looking at the dynamic behavior or the geometrical and topo-
logical properties of the solution, whether a particular system comes from
Economics, Biology, Physics, Chemistry, or even Social Science. The dy-
namical system is the subject that provides the mathematical tools for it’s
analysis.
Dynamical system in point of view of mathematics is a system whose be-
havior at given time depends, in some sense, on it’s behavior at one or more
previous times.

An equation which express a value of a sequence as a function of the other
terms in the sequence is called a difference equation.
In particular, an equation which expresses the value xn of a sequence an as
a function of the term an−1 is called a first order difference equation. If we
can find a function f such that an = f(n) , n = 1, 2, 3, ... then we will have
solved the difference equation.

This thesis consists mainly of 5 chapters, where Chapter 1 deals with first
order difference equations. We focus on the equilibrium points and their
stability, the Cobweb Diagram and periodic points. Chapter 2 deals with
difference equations of higher order. We focus on the solution of kth or-
der homogeneous linear difference equations with constant coefficients and
the solution of nonlinear difference equation, equilibrium points of difference
equations, the linearization and the global stability theorems of non linear
difference equations. In Chapter 3 we will study the Dynamics of the equation

xn+1 =
α + βxn

A+Bxn + Cxn−k
, n = 0, 1, 2, .... (0.1)

In Chapter 4 we will mention the special cases of Eq.(0.1) and study some
of them.
Finally chapter 5 presents the Matlab codes of all figures in this thesis.

Eq.(0.1) was studied by G.LADAS in [15], when k = 1. He studied the
equilibrium points and the local and global stability of the solution of the
equation.
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The aim of this thesis is to study: equilibrium points, local stability
and global stability, periodic solution, semicycles and boundedness of the
solutions of the equation

xn+1 =
α + βxn

A+Bxn + Cxn−k
, n = 0, 1, 2, ...

where the parameters α, β, A, B and C are non-negative real numbers with at
least one parameter is non zero and the initial conditions x−k, x−k+1, ..., x−1, x0

are non-negative real numbers with the solution is defined and k ∈ {1, 2, 3, ...}.

We are particulary interested in the asymptotic behavior of the solutions,
that is the behavior of the solution as n→∞.
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Chapter 1

Dynamics of First Order Differ-
ence Equations
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1 Dynamics of First Order Difference Equa-

tions

1.1 Introduction

Difference equations usually describe the evolution of certain phenomena over
the course of time. In difference equations the term xn+1 is related to the
term xn and the relation is expressed in the difference equation

xn+1 = f(xn) (1.1)

starting from a point x0, we can generate the sequence

x0, f(x0), f(f(x0)), f(f(f(x0))), ...

and for convenience we use the notation

f 2(x0) = f(f(x0)) = x2

f 3(x0) = f(f(f(x0))) = x3

.

.

.

fn(x0) = xn

where f(x0) is called the first iterate of x0 under f , and f 2(x0) is called
the second iterate of x0 under f , and more generally fn(x0) is the n-th iterate
of x0 under f .
Thus we can have

xn+1 = fn+1(x0) = f(fn(x0)) = f(xn)

This iterative procedure is an example of a discrete dynamical system.
In particular, we can find out the solution of linear first order difference
equation by forward iteration with initial condition x0.
For example, let us consider the simplest case of the linear difference equation

xn+1 = axn



9

with the initial condition x0, so we get the solution by forward iteration with
the initial condition x0 as follows:

x1 = ax0

x2 = ax1 = a(ax0) = a2x0

x3 = ax2 = a3x0

.

.

.

xn = anx0

We can notice that the limiting behavior of the solution of equation

xn+1 = axn

is as follow:

1. If |a| < 1, then lim
n→∞

xn = 0

2. If a > 1, then lim
n→∞

xn =∞.

3. if a < −1, then lim
n→∞

xn does not exist.

4. If a = 1, then every point is an equilibrium point.

5. If a = −1, then xn =

{
x0 if n is even
−x0 if n is odd

or xn = (−1)nx0

1.2 The Equilibrium Points

Let us consider the difference equation

xn+1 = f(xn) (1.2)

Definition 1.1. A point x is said to be an equilibrium point if it is a fixed
point of the map f of the Eq.(1.2) ; i.e; if f(x) = x.
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Example 1.1. Determine the fixed points of the following function

f(x) = x2 − 4x+ 6

Solution: We can find the fixed points by solving the following equation:

f(x) = x

then, we get
x2 − 4x+ 6 = x

hence
x2 − 5x+ 6 = 0

then
(x− 2)(x− 3) = 0

hence, there are two fixed points

x = 2 and x = 3

1.3 Stability Theorem

One of the main objectives in the theory of dynamical systems is the study of
the behavior of its solution near the equilibrium point, such investigation is
called Stability theory. To do this investigation, we begin by introducing
the basic notions of stability.
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Definition 1.2. Let f : I −→ I where I is an interval in the set of real
numbers < and x be an equilibrium point of the difference equation

xn+1 = f(xn) (1.3)

then

1. The equilibrium point x of Eq.(1.3) is called locally stable if for every
ε, there exists δ such that if

|x0 − x| < δ

then
|xn − x| < ε

for all n ≥ 1, and all x ∈ I.

2. The equilibrium point is called unstable if it is not stable.

3. The equilibrium point x of Eq.(1.3) is called lacally asymptotically
stable or (asymptotically stable) if it is stable and if there exists γ > 0
such that if

|x0 − x| < γ

then
lim
n→∞

xn = x

4. The equilibrium point x of Eq.(1.3) is called global attractor if for
every

x0 ∈ I
then

lim
n→∞

xn = x

5. The equilibrium point x of Eq.(1.3) is called globally asymptotically
stable (or globally stable) if it is stable and is global attractor.

6. The equilibrium point x of Eq.(1.3) is called repeller if there exists
r > 0 such that if x0 ∈ I and

|x0 − x| < r

then there exists N ≥ 1 such that

|xN − x| > r
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Clearly, a repeller is an unstable equilibrium point.

1.4 The Cobweb Diagram

One of the important graphical method for analyzing the stability of equi-
librium points for (xn, xn+1) is the cobweb diagram, since xn+1 = f(xn).
We draw a graph of f , we can choose our initial point x0, then we can
find x1 from the graph. This could be done by drawing a vertical line from
the point x0, so that it also intersects the graph of f at (x0, x1). Next
draw a horizontal line from (x0, x1) to meet the diagonal line y = x at the
point (x1, x1). Now again a vertical line drawn from (x1, x1) will meet the
graph of f at (x1, x2), continuing this process we can evaluate all the points
in the orbit of x0, namely, the set {x0, x1, x2, · · · , xn, · · · } or equivalently
{x0, f(x0), f

2(x0), · · · , fn(x0), · · · }.

Definition 1.3. Let µ > 0, then the difference equation

xn+1 = µxn(1− xn)

is called discrete Logistic difference equation, and the function

fµ(x) = µx(1− x)

is called Logistic Map.
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Example 1.2. : Consider the difference equation

xn+1 = µxn(1− xn)

for µ = 2 and µ = 3.6

1. Find the equilibrium (fixed) points.

2. Determine the stability of the equilibrium points by using Cobweb dia-
gram.

Solution: To find the fixed points of fµ, we solve the equation

µx(1− x) = x

. This yields two equilibrium points: x1 = 0, and x2 = µ−1
µ

.

• When µ = 2, then the two equilibrium points are x1 = 0 and x2 = 1
2
.

The stability can be achieved from cobweb diagram.

Figure.A. shows the cobweb diagram, from which we can see that the
equilibrium point x2 is asymptotically stable.

Figure.A.
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• When µ = 3.6, then the two equilibrium points are x1 = 0 and x2 =
0.7222. The stability can be achieved from cobweb diagram.

Figure.B. shows the cobweb diagram, from which we can see that the
equilibrium point x2 is unstable.

Figure.B.
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1.5 Criteria for Stability

In this section, we are going to introduce some powerful criteria for local
stability of equilibrium(fixed) points. Equilibrium points are divided into
two types: hyperbolic and non hyperbolic. A fixed point x of a map f is
said to be hyperbolic if |f ′(x)| 6= 1. Otherwise it is non hyperbolic.

Theorem 1.4. [11] (Criteria for Stability) Let x be a hyperbolic fixed point
of a map f , where f is continuously differentiable at x. The following state-
ments then holds true:

1. If |f ′(x)| < 1, then the equilibrium point x of Eq.(1.2) is asymptotically
stable.

2. If |f ′(x)| > 1, then the equilibrium point x of Eq.(1.2) is unstable.

Theorem 1.5. [11] Suppose that for an equilibrium point x of Eq.(1.2),
f ′(x) = 1. The following statements then holds true:

1. f ′′(x) 6= 0, then the equilibrium point x of Eq.(1.2) is unstable.

2. f ′′(x) = 0 and f ′′′(x) > 0, then the equilibrium point x of Eq.(1.2) is
unstable.

3. If f ′′(x) = 0 and f ′′′(x) < 0 , then the equilibrium point x of Eq.(1.2)
is asymptotically stable.

1.6 Periodic Points

In studying the dynamical system its important to study its periodicity. An
example: the motion of the pendulum is periodic.

Definition 1.6. Let b be in the domain of f . Then:
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1. b is called a periodic point of f in Eq.(1.2) if for some positive integer
k, fk(b) = b. Hence a point is k-periodic if it is a fixed point of fk.
The periodic orbit of b is

O(b) = {b, f(b), f 2(b), ..., fk−1(b)}

and it’s often called a k-orbit.

2. b is called eventually k-periodic if for some positive integer m, fm(b) is
a k-periodic point; in other words fm+k(b) = fm(b).

Example 1.3. Consider the difference equation generated by the tent func-
tion

T (x) =

{
2x if 0 ≤ x ≤ 1

2
,

2(1− x) if 1
2
< x ≤ 1.

(1.4)

We can first obtain that the periodic points of period 2 are the fixed points of
T 2 . It is easy to verify that T 2 is given by

T 2(x) =


4x if 0 ≤ x < 1

4
,

2(1− 2x) if 1
4
≤ x < 1

2
,

4(x− 1
2
) if 1

2
≤ x < 3

4
,

4(1− x) if 3
4
≤ x ≤ 1.

(1.5)

There are four equilibrium points : 0, 0.4, 2
3
, and 0.8, two of which 0 and

2
3
, are equilibrium points for T . Hence {0.4, 0.8} is the only 2- cycle of T .

Definition 1.7. Let b be a k-periodic point of f . Then b is:

1. Stable if it is a stable fixed point of fk.

2. Asymptotically stable if it is an asymptotically stable fixed point of fk.

3. Unstable if it is an unstable fixed point of fk.
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Chapter 2
Difference Equations of Higher

Order
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2 Linear Difference Equations of Higher Or-

der

2.1 General Theory of Linear Difference Equations

The normal form of kth order nonhomogeneous linear difference equation is
given by:

xn+k + p1(n)xn+k−1 + p2(n)xn+k−2 + · · ·+ pk(n)xn = g(n) (2.1)

where pi(n) and g(n) are real valued functions defined for n ≥ n0 and
pk(n) 6= 0. If g(n) = 0, then the Eq.(2.1) is said to be a homogeneous equa-
tion. Now the equation:

xn+k + p1xn+k−1 + p2xn+k−2 + · · ·+ pkxn = 0 (2.2)

is called linear difference equation of kth order with constant coefficients.

The sequence xn is said to be a solution of Eq.(2.1) if it satisfies the
equation. If we specify our initial conditions of the equation, this lead us to
the initial value problem

xn+k + p1(n)xn+k−1 + p2(n)xn+k−2 + · · ·+ pk(n)xn = g(n) (2.3)

xn0 = a0, xn0+1 = a1

.

.

.

xn0+k−1 = ak−1 (2.4)

where ai’s are real numbers.

Example 2.1. Consider the 2nd order homogeneous difference equation

xn+2 = 4xn+1 + 5xn (2.5)

where x0 = 1, x1 = 2, then we can find x2, x3:

x2 = 4x1 + 5x0 = 13

x3 = 4x2 + 5x1 = 62
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and by the same method, we can get x4, x5, · · · .
So if we have the initial conditions, then we can find the whole solution of
our difference equation.

Theorem 2.1. [11] The initial value problems of Eq.(2.3) and Eq.(2.4) have
a unique solution xn.

Definition 2.2. The functions f1(n),f2(n),· · · ,fr(n) are said to be linearly
dependent for n0 ≤ n if there are nonzero constants a1,a2,· · · ,ar such that

a1f1(n) + a2f2(n) + · · ·+ arfr(n) = 0

.

The negation of linear dependence is linear independence. Then the set of
functions f1(n),f2(n),· · · ,fr(n) are said to be linearly independent if whenever

a1f1(n) + a2f2(n) + · · ·+ arfr(n) = 0

for all n0 ≤ n, then we must have a1 = a2 = · · · = ar = 0.

Definition 2.3. A set of k linearly independent solution of Eq.(2.2) is called
a fundamental set of solutions.

Theorem 2.4. (The Fundamental Theorem) [11] If pk 6= 0 is non zero for
all k, then Eq.(2.2) has a fundamental set of solutions.

Theorem 2.5. (Superposition Principle) [11] If x1(n),x2(n),· · · ,xr(n) are
solutions of Eq.(2.2), then also

x(n) = a1x1(n) + a2x2(n) + · · ·+ arxr(n)

is a solution of Eq.(2.2), where a1,a2,· · · ,ar are real numbers.

Example 2.2. Consider the third order homogeneous difference equation

xn+3 − 3xn+2 + 3xn+1 − xn = 0

Where the functions 1, n, n2 form the fundamental set of solutions of the
equation.
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We can verify that the fundamental set forms a solution of the equation by
substituting xn = 1, xn = n, xn = n2 into the equation.

From superposition principle we can say that

xn = c1 + c2n+ c3n
2

where c1,c2,c3 are real numbers, is also a solution of the equation, which
can be done easily.

In the remaining of this section we will give all possible solutions of
Eq.(2.2). The solutions of Eq.(2.1) have been investigated in [11].

2.2 Solution of kth order homogeneous linear difference
equation with constant coefficients

Now, consider the kth order homogeneous linear difference equation (2.2)
where the pi’s are constants and pk 6= 0. Define λ to be a characteristic root
of Eq.(2.2), then λn is a solution of Eq.(2.2). Substitute λn into Eq.(2.2), we
obtain:

λk + p1λ
k−1 + · · ·+ pk = 0 (2.6)

which is called the characteristic equation of Eq.(2.2)

The general solution of Eq.(2.2) has different forms depending on λ’s.

1. Distinct roots
Suppose that the characteristic roots λ1, λ2, · · · , λk are distinct.i.e.

|λ1| 6= |λ2| 6= · · · |λk|

So the general solution is:

xn = c1λ
n
1 + c2λ

n
2 + · · ·+ ckλ

n
k

2. Repeated Roots

λ1 = λ2 = · · · = λm, 2 ≤ m ≤ k
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Then the general solution of difference equation( 2.2) is given by:

xn = c1λ
n
1 + c2nλ

n
2 + · · ·+ cmn

m−1λnm + cm+1λ
n
m+1 + · · ·+ ckλ

n
k

3. The absolute value of the roots are equal
i.e.

|λ1| = |λ2| = · · · = |λk|

• The characteristic roots are equal
the general solution is:

xn = c1λ
n
1 + c2nλ

n
2 + · · ·+ ckn

k−1λnk

• The characteristic roots are not equal

λ1 = λ2 = · · · = λm = λ

and
λm+1 = λm+2 = · · · = λk = −λ

The general solution is given by:

xn = (c1 + c2n+ c3n
2 + · · ·+ cmn

m−1)λn +
(cm+1 + cm+2n+ cm+3n

2 + · · ·+ ckn
k−m−1)(−1)nλn

4. Some of roots are complex
Assume that

λ1 = α + iβ

and
λ2 = α− iβ

and that λ3, λ4, · · · , λk are all real and distinct such that

|λ3| > |λ4| > · · · > |λk|

where

λ1 = α + iβ

= reiφ

= r(cos φ+ i sin φ)
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and

λ2 = α− iβ
= re−iφ

= r(cos φ− i sin φ)

Then the general solution of Eq.(2.2) is given by:

xn = c1r
neinφ + c1r

ne−inφ + c3λ
n
3 + · · ·+ ckλ

n
k

= c1r
n(cos nφ+ i sin nφ) + c2r

n(cos nφ− i sin nφ) + c3λ
n
3 + · · ·+ ckλ

n
k

= (c1 + c2)r
n cos nφ+ (c1 − c2)rni sin nφ+ c3λ

n
3 + · · ·+ ckλ

n
k

= rn[(c1 + c2) cos nφ+ (c1 − c2)i sin nφ] + c3λ
n
3 + · · ·+ ckλ

n
k

= rn[a1 cos nφ+ a2 sin nφ] + c3λ
n
3 + · · ·+ ckλ

n
k

where a1 = c1 + c2 and a2 = (c1 − c2)i. Now, Let

cos ω =
a1√
a2

1 + a2
2

, sin ω =
a2√
a2

1 + a2
2

, ω = arctan(
a2

a1

)

The solution will be

xn = rn
√
a2

1 + a2
2[cos ω cos nφ+ sin ω sin nφ] + c3λ

n
3 + · · ·+ ckλ

n
k

= rn
√
a2

1 + a2
2 cos (nφ− ω) + c3λ

n
3 + · · ·+ ckλ

n
k

= Arn cos (nφ− ω) + c3λ
n
3 + · · ·+ ckλ

n
k

where

A =
√
a2

1 + a2
2, r =

√
α2 + β2, φ = arctan(

β

α
)
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2.3 Solution of kth order nonhomogeneous linear dif-
ference equations with constant coefficients

The main idea of solving such difference equations is to find particular so-
lution in addition to homogeneous solution, and there are some techniques
discussed in this manner in [2].

Example 2.3. Find the general solution of

xn+2 − 5xn+1 + 6xn = 4nn2

Solution:
Let x0, x1 be two initial conditions. Then

xn = xhn + xpn

where xn is the general solution, xhn is the homogeneous solution, and xpn
is the particular solution.
To find the homogeneous solution: solve the characteristic equation:

r2 − 5r + 6 = 0

r2 − 5r + 6 = (r − 2)(r − 3) = 0

⇒
r1 = 2, r2 = 3

Then, the homogeneous solution is:

xhn = arn1 + brn2
= a2n + b3n

To find the particular solution, let

xp = c4n + dn4n + en24n

substituting this potential solution into the equation and equating coeffi-
cients as following

xpn = c4n + dn4n + en24n
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xpn+1 = c4n+1 + d(n+ 1)4n+1 + e(n+ 1)24n+1

xpn+2 = c4n+2 + d(n+ 2)4n+2 + e(n+ 2)24n+2

Hence, we get

c4n+2+d(n+2)4n+2+e(n+2)24n+2−5(c4n+1+d(n+1)4n+1+e(n+1)24n+1)+

+6(c4n + dn4n + en24n)

= 4nn2

after some simple algebraic calculations, we get

⇒ 6c = 1⇒ c = 1
6

⇒ −2d = 0⇒ d = −10
9

⇒ d− e = 0⇒ e = 244
108

Thus, the general solution of the equation is:

xn = a2n + b3n +
244

108
4n − 10

9
n4n +

1

6
n24n

To find the values of the constants a and b the initial conditions x0, x1

must be provided.
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2.4 Limiting Behavior of Solutions

To simplify our exposition we restrict our discussion to the second order
difference equation

xn+2 + p1xn+1 + p2xn = 0 (2.7)

Suppose that λ1 and λ2 are the characteristic roots of the equation. Then
we have the following three cases:

Case 1: λ1 and λ2 are distinct roots. Then x1(n) = λn1 and x2(n) = λn2
are two linearly independent solutions of Eq.(2.7) and the general solution is
given by :

xn = a1λ
n
1 + a2λ

n
2

Example 2.4. Consider the equation

xn+2 = 3xn+1 − 2xn

then the characteristic equation is:

λ2 − 3λ+ 2 = 0

The solutions to the quadratic equation are

λ = 1, λ = 2

and the general solution is

xn = a1 + a22
n

Now assume that
|λ1| > |λ2|

then λ1 is called the dominant root and x1(n) the dominant solution.



26

The general solution could be written as

xn = λn1 (a1 + a2(
λ2

λ1

)n)

It is clear that lim
n→∞

xn = lim
n→∞

a1λ
n
1 since λ2

λ1
< 1, then lim

n→∞
λ2

λ1
= 0.

We can notice that:

1. If |λ1| > 1, then the solution xn will diverge.

2. If λ1 = 1, then the solution xn will be a constant solution.

3. If λ1 = −1, then the solution xn will be oscillating between two values
a1 and −a1.

4. If |λ1| < 1, then the solution xn will converges to zero.

Case 2: λ1 = λ2 = λ, then the general solution is given by

xn = λn(a1 + a2n)

Example 2.5. Consider the equation

xn+2 + 4xn+1 + 4 = 0

then the characteristic equation is

λ2 + 4λ+ 4 = 0

the solution to the quadratic equation is

λ = −2

and the general solution is

xn = a1(−2)n + a2n(−2)n

It is obvious that lim
n→∞

xn = lim
n→∞

λn(a1 + a2n), then
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1. If |λ| < 1, then the solution will converge to zero since lim
n→∞

nλn = 0.

2. If |λ| ≥ 1, then the solution will diverge.

Case 3: λ1 and λ2 are Complex roots; i.e; λ1 = α+ iβ and λ2 = α− iβ,
where β 6= 0. Then the general solution will be

xn = a1(α + iβ)n + a2(α− iβ)n

In polar coordinates the complex number α + iβ could be written as
xn = reiφ where

r =
√
α2 + β2, α = r cosφ, β = r sinφ, φ = arctan(

β

α
)

then

xn = a1(r cosφ+ ir sinφ)n + a2(r cosφ− i sinφ)n

so after arrangement we get

xn = rn(c1 cos(nφ) + c2 sin(nφ))

where c1 = a1 + a2 and c2 = a1 − a2.

Let

cos ω =
c1√
c21 + c22

, sin ω =
c2√
c21 + c22

, ω = arctan(
c2
c1

)

then we can write the solution as

xn = Crn cos(nφ− ω)

where C =
√
c21 + c22.

The solution xn is oscillating since the cosine function oscillates. But this
oscillation have three different cases:

1. If r < 1, then λ1 and λ2 = λ1 lie inside the unitary disk and the solu-
tion will converge to zero.
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2. If r = 1, then λ1 and λ2 = λ1 lie on the unitary disk and the solution
oscillate in constant magnitude.

3. If r > 1, then λ1 and λ2 = λ1 lie outside the unitary disk and the
solution will diverge.

Example 2.6. Consider the equation

xn+2 − 2xn+1 + 2xn = 0

the characteristic equation is

λ2 − 2λ+ 2 = 0

then
λ1 = 1 + i and λ2 = 1− i

where r =
√

2 and φ = arctan(1).

The real formed solution is

xn = 2
n
2 (c1 cos(nφ) + c2 sin(nφ))

Then since r =
√

2 > 1, then λ1 and λ2 = λ1 lie outside the unitary disk
and the solution will diverge.

Theorem 2.6. [11] The following statements hold:

1. All solutions of Eq.(2.7) oscillate about zero if and only if the charac-
teristic equation has no positive real roots.

2. All solutions of Eq.(2.7) converge to zero if and only if

max{|λ1|, |λ2|} < 1

Consider the second order non homogeneous difference equation

xn+2 + p1xn+1 + p2xn = M (2.8)



29

where M is nonzero. Suppose that x is an equilibrium point of such equation,
then

x+ p1x+ p2x = M

solving for x we get

x =
M

1 + p1 + p2

But the general equation of the nonhomogeneous equation is

xn = xhn + xpn

Where xhn is the solution of the homogeneous equation, and xpn is the par-
ticular solution. For this equation we take xpn = x.

Theorem 2.7. [11] The following statements holds:

1. All solutions of Eq.(2.8) oscillate about x if and only if the character-
istic homogeneous equation of Eq.(2.7) has no positive real roots.

2. All solutions of Eq.(2.8) converges to x if and only if max{|λ1|, |λ2|} <
1 where λ1 and λ2 are the real roots of the homogeneous characteristic
equation of Eq.(2.7).

Higher Order Scalar Difference Equations

2.5 Definitions

Here, we list some definitions which will be useful in our investigation.

Definition 2.8. Let I be some interval of real numbers and let

f : Ik+1 −→ I

be a continuously differentiable function. Then for every set of initial condi-
tions x−k, · · · x−1, x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, · · · , xn−k), n = 0, 1, · · · (2.9)

has a unique solution {xn}∞n=−k.
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Definition 2.9. A point x is called an equilibrium point of Eq.(2.9) if

x = f(x, x, · · · , x)

that is
xn = x, for n ≥ 0

is a solution of Eq.(2.9), or equivalently, x is a fixed point of f .

Definition 2.10. Let x be an equilibrium point of Eq.(2.9)

1. The equilibrium point x of Eq.(2.9) is called stable if for every ε, there
exists δ such that if

x−k, · · · x−1, x0 ∈ I

and
|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < δ

then
|xn − x| < ε

for all n ≥ −k

2. The equilibrium point x of Eq.(2.9) is called lacally asymptotically
stable if is it stable and if there exists γ > 0 such that if

x−k, · · · , x−1, x0 ∈ I

and
|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < γ

then
lim
n→∞

xn = x

3. The equilibrium point x of Eq.(2.9) is called global attractor if for
every

x−k, · · · , x−1, x0 ∈ I

we have
lim
n→∞

xn = x
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4. The equilibrium point x of Eq.(2.9) is called global asymptotically
stable if it is stable and global attractor.

5. The equilibrium point x of Eq.(2.9) is called unstable if it is not stable

6. The equilibrium point x of Eq.(2.9) is called repeller if there exists
r > 0 such that if x−k, · · · , x−1, x0 ∈ I and

|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < γ

then there exists N > −k such that

|xN − x| > r

Clearly, a repeller is an unstable equilibrium.

Definition 2.11. Let a = ∂f
∂x

(x, x) and b = ∂f
∂y

(x, x) where f(x, y) is the

function in Eq.(2.9) and x is the equilibrium of Eq.(2.9). Then the equation

zn+1 = azn + bzn−k, n = 0, 1, 2, · · · (2.10)

is called linearized equation associated with Eq.(2.9) about the equilib-
rium point x, and its characteristic equation is

λk+1 − aλk − b = 0. (2.11)

Theorem 2.12. [17]:(Linearized Stability)

1. If all the roots of Eq.(2.11) lie in open disk |λ| < 1, then the equilibrium
point x of Eq.(2.9) is asymptotically stable.

2. If at least one root of Eq.(2.11) has absolute value greater than 1, then
the equilibrium x of Eq.(2.9) is unstable.

Theorem 2.13. [13] Assume that p, q ∈ < and k ∈ {1, 2, 3, · · · }. Then a
necessary and sufficient condition for asymptotic stability of the equation

xn+1 − pxn − qxn−1 = 0, n = 0, 1, 2, · · ·

is that
|p| < 1− q < 2
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Theorem 2.14. [5] Assume a, b ∈ < and k ∈ {1, 2, · · · }. Then

|a|+ |b| < 1 (2.12)

is sufficient condition for asymptotic stability of the difference equation

xn+1 − axn + bxn−k = 0, n = 0, 1, 2, · · · (2.13)

Suppose in addition that one of the following two cases holds:

1. k is odd and b < 0 .

2. k is even and ab < 0.

Then Eq.(2.12) is a necessary condition for asymptotic stability of Eq.(2.13).

Theorem 2.15. [16] The difference equation

yn+1 − byn + byn−k = 0, n = 0, 1, 2, ...

is asymptotically stable if and only if 0 < |b| < 1
2

cos( kπ
k+2

)

Theorem 2.16. [14] Let I = [a, b] be an interval of real numbers and assume

f : [a, b]× [a, b]→ [a, b]

is continuous function satisfying the following properties:

1. f(x, y) is nondecreasing in x for each y ∈ [a, b] and f(x, y) is nonin-
creasing in y for each x ∈ [a, b].

2. If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f(m,M)

M = f(M,m)

then m = M .
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Then Eq.(2.9) has a unique equilibrium x ∈ [a, b] and every solution of
Eq.(2.9) converges to x.

Proof. Set
m0 = a and M0 = b

for each i = 1, 2, 3, · · ·

mi = f(mi−1,Mi−1) and Mi = f(Mi−1,mi−1)

then

m1 = f(m0,M0) ≥ a = m0 and M1 = f(M0,m0) ≤ b = M0

and
m2 = f(m1,M1) ≥ f(m0,M0) = m1 ≥ m0

M2 = f(M1,m1) ≤ f(M0,m0) = M1 ≤M0

by induction, we have

m0 ≤ m1 · · ·mi ≤ · · · ≤Mi ≤ · · · ≤M1 ≤M0

also
xn+1 = f(xn, xn−k) ≤ f(M0,m0) = M1

xn+1 = f(xn, xn−k) ≥ f(m0,M0) = m1

and
xn+1 = f(xn, xn−k) ≤ f(M1,m1) = M2

xn+1 = f(xn, xn−k) ≥ f(m1,M1) = m2

by induction, we have

mi ≤ xn ≤Mi, n ≥ (i− 1)k + i

set
m = lim

i→∞
mi and M = lim

i→∞
Mi

then we have
m ≤ lim

i→∞
inf xi ≤ lim

i→∞
supxi ≤M
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by continuity of f

m = f(m,M) and M = f(M,m)

therefore in view of (2)
m = M = x

Theorem 2.17. [14] Let I = [a, b] be an interval of real numbers and assume

f : [a, b]× [a, b]→ [a, b]

is continuous function satisfying the following properties:

1. f(x, y) is non increasing in each of its arguments;

2. If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f(M,M)

M = f(m,m)

then m = M .

Then Eq.(2.9) has a unique equilibrium x ∈ [a, b] and every solution of
Eq.(2.9) converges to x.

Proof. Set
m0 = a and M0 = b

for each i = 1, 2, 3, · · · . Set

Mi = f(mi−1,mi−1) and mi = f(Mi−1,Mi−1)

Then

m1 = f(M0,M0) ≥ a = m0, and M1 = f(m0,m0) ≤ b = M0

and
m2 = f(M1,M1) ≥ f(M0,M0) = m1 ≥ m0
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M2 = f(m1,m1) ≤ f(m0,m0) = M1 ≤M0

By induction, we have

m0 ≤ m1 ≤ · · · ≤ mi ≤ · · · ≤Mi ≤ · · · ≤M1 ≤M0

Also
xn+1 = f(xn, xn−k) ≤ f(m0,m0) = M1

xn+1 = f(xn, xn−k) ≥ f(M0,M0) = m1

and
xn+1 = f(xn, xn−k) ≤ f(m1,m1) = M2

xn+1 = f(xn, xn−k) ≥ f(M1,M1) = m2

By induction, we have

mi ≤ xn ≤Mi, for n ≥ (i− 1)k + i

Set
m = lim

i→∞
mi and M = lim

i→∞
Mi

then clearly
M ≥ lim sup

i→∞
xi ≥ lim inf

i→∞
xi ≥ m

and by the continuity of f ,

m = f(M,M) and M = f(m,m)

therefore in view of (2)
m = M = x

Theorem 2.18. [14] consider the difference Eq.(2.9). Let I = [a, b] be some
interval of real numbers and assume that

f : [a, b]× [a, b]→ [a, b]

is continuous function satisfying the following properties:

1. f(x, y) is non increasing in x for each y ∈ [a, b], and f(x, y) is non
increasing in y for each x ∈ [a, b].
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2. If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f(M,M)

M = f(m,m)

then m = M .

3. The equation f(x, y) = x has a unique positive solution.

Then Eq.(2.9)has a unique positive solution and every positive solution of
Eq.(2.9) converges to x.

Proof. set m0 = a and M0 = b. for i = 1, 2, 3, · · ·

mi = f(Mi−1,Mi−1) and Mi = f(mi−1,mi−1)

Then

m1 = f(M0,M0) ≥ a = m0, and M1 = f(m0,m0) ≤ b = M0

and
m2 = f(M1,M1) ≥ f(M0,M0) = m1 ≥ m0

M2 = f(m1,m1) ≤ f(m0,m0) = M1 ≤M0

By induction, we have

m0 ≤ m1 ≤ · · · ≤ mi ≤ · · · ≤Mi ≤ · · · ≤M1 ≤M0

Also
xn+1 = f(xn, xn−k) ≤ f(m0,m0) = M1

xn+1 = f(xn, xn−k) ≥ f(M0,M0) = m1

and
xn+1 = f(xn, xn−k) ≤ f(m1,m1) = M2

xn+1 = f(xn, xn−k) ≥ f(M1,M1) = m2

By induction, we have

mi ≤ xn ≤Mi, n ≥ (i− 1)k + i
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set
m = lim

i→∞
mi and M = lim

i→∞
Mi

then we have
m ≤ lim

i→∞
inf xi ≤ lim

i→∞
supxi ≤M

By continuity of f

m = f(M,M) and M = f(m,m)

by assumption (2)
m = M = x

Theorem 2.19. [14] Assume that f ∈ C [(0,∞)× (0,∞), (0,∞)] and that
f(x, y) is decreasing in both arguments. Let x be a positive equilibrium of
equation Eq.(2.9), then every oscillatory solution of Eq.(2.9) has semicycle
of length at most k + 1.

Proof. When k = 1, the proof is presented as theorem 1.7.2 in [1]. We just
give the proof of the theorem for k = 2. The other cases for k ≥ 3 are similar
and can be omitted. Assume that {xn} is an oscillatory solution with three
consecutive terms xN−1, xN , xN+1 in a positive semicycle

xN−1 ≥ x, xN ≥ x, xN+1 ≥ x

with at least one of the inequalities being strict. The proof in the case of
negative semicycle is similar and is omitted.

Then by using the decreasing character of f . We obtain

xN+2 = f(xN+1, xN−1) < f(x, x) = x

which completes the proof.
For k = 3, assume that {xn} is an oscillatory solution with four consecu-

tive terms xN−1, xN , xN+1, xN+2 in a negative semicycle

xN−1 ≤ x, xN ≤ x, xN+1 ≤ x, xN+2 ≤ x
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with at least one of the inequalities being strict. The proof in the case of
positive semicycle is similar and is omitted. Then by using the decreasing
character of f . We obtain

xN+3 = f(xN+2, xN−1) > f(x, x) = x

which completes the proof.

Theorem 2.20. [14] Assume that f ∈ C [(0,∞) × (0,∞), (0,∞)] is such
that f(x, y) is increasing in x for each fixed y.and f(x, y) is decreasing in
y for each fixed x. Let x be a positive equilibrium of equation Eq.(2.9) then
every oscillatory solution of equation (2.9) has semicycle of length at least
k + 1.

Proof. When k = 1, the proof is presented as theorem1.7.4 in [14]. We just
give the proof of the theorem for k = 2.the other cases for k ≥ 3 are similar
and can be omitted.

Assume that {xn} is an oscillatory solution with three consecutive terms

xN−1, xN , xN+1

such that
xN−1 < x < xN+1

or
xN−1 > x > xN+1

we will assume that
xN−1 < x < xN+1

the other case is similar and will be omitted. Then by using decreasing
character of f we obtain

xN+2 = f(xN+1, xN−1) > f(x, x)

Now, if xN ≥ x then the result follows. Otherwise xN < x. Hence

xN+3 = f(xN+2, xN) > f(x, x) = x

which shows that it has at least three terms in the positive semicycle
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Theorem 2.21. [14] Consider the difference equation

xn+1 = f0(xn, xn−1)xn + f1(xn, xn−1)xn−1, n = 0, 1, 2, · · · (2.14)

with nonnegative initial conditions and

f0, f1 ∈ C[[0,∞)× [0,∞), [0, 1)]

. Assume that the following hypothesis hold:

1. f0 and f1 are non increasing in each of their arguments;

2. f0(x, x) > 0 for all x ≥ 0;

3. f0(x, y) + f1(x, y) < 1 for all x, y ∈ (0,∞).
Then the zero equilibrium of Eq.(2.14) is globally asymptotically stable.

Theorem 2.22. [14] Assume that

1. f ∈ C [(0,∞)× (0,∞), (0,∞)];

2. f(x, y) is non increasing in x and decreasing in y;

3. xf(x, x) is increasing in x;

4. The equation

xn+1 = xnf(xn, xn−1), n = 0, 1, 2, · · ·

has a unique positive equilibrium x.
Then x is globally asymptotically stable.
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Chapter 3

Dynamics of xn+1 = α+βxn
A+Bxn+Cxn−k
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3 Dynamics of xn+1 = α+βxn
A+Bxn+Cxn−k

In this chapter we present the main part of this thesis, that is studying and
investigating the difference equation

xn+1 =
α + βxn

A+Bxn + Cxn−k
, n = 0, 1, 2, ... (3.1)

where the parameters α, β, A, B and C are non-negative real numbers with at
least one parameter is non zero and the initial conditions x−k, x−k+1, ..., x−1, x0

are non-negative real numbers with the solution is defined and k ∈ {1, 2, 3, ...}.

Our concentration is on invariant intervals, periodic character, the char-
acter of semicycles and global asymptotic stability of all positive solutions of
Eq.(3.1).

It is worth mentioning that the results in [15] are special case of our main
results. Where the global stability of Eq.(3.1) for k = 1 has been investi-
gated in it. They showed that in respect to variation of the parameters, the
positive equilibrium point is globally asymptotically stable or every solution
lies eventually in an invariant interval.

Dehghan in [5] investigated the global stability, invariant intervals, the
character of semi-cycles, and boundedness of the equation

xn+1 =
xn + p

Bxn + qxn−k
, n = 0, 1, 2, ...

where the parameters p and q and the initial conditions x−k, x−k+1, ..., x−1, x0

are positive real numbers, k ∈ {1, 2, 3, ...}.

3.1 Change of variables

Theorem 3.1. The change of variable

xn =
A

B
yn
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reduces Eq.(3.1) to the difference equation

yn+1 =
p+ qyn

1 + yn + ryn−k
, n = 0, 1, 2, 3, ... (3.2)

where

p =
αB

A2
, q =

β

A
, r =

C

B

with
p, q, r ∈ (0,∞)

and
y−k, y−k+1, · · · , y−1, y0 ∈ (0,∞)

Proof. Let

xn =
A

B
yn

then

xn+1 =
A

B
yn+1

and

xn−k =
A

B
yn−k

Substitute in the Eq.(3.1), we get

A

B
yn+1 =

α + β A
B
yn

A+B A
B
yn + C A

B
yn−k

by pulling a common factor A
B

,

A

B
yn+1 =

A
B

(
B
A
α + β yn

)
A
B

(B +B yn + C yn−k)

hence

yn+1 =
B
A

(
B
A
α + βyn

)
B
(
1 + yn + C

B
yn−k

)
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then

yn+1 =
Bα
A2 + β

A
yn

1 + yn + C
B
yn−k

Now let

p =
αB

A2
, q =

β

A
, r =

C

B

reduces Eq.(3.1) to

yn+1 =
p+ qyn

1 + yn + ryn−k

Thus, the proof has been completed.

Definition 3.2. Let I be some interval of real numbers and let

f : Ik+1 −→ I

be a continuously differentiable function. Then for every set of initial condi-
tions x−k, · · · x−1, x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, · · · (3.3)

has a unique solution {xn}∞n=−k.

Definition 3.3. The solution {yn}∞n=−k of the difference equation yn+1 =
f(yn, yn−1, · · · , yn−k) is periodic if there exists a positive integer p such that
yn+p = yn. The smallest such integer p is called the prime period of the
solution of the difference equation.

Definition 3.4. The equilibrium point y of the equation

yn+1 = f(yn, yn−1, · · · , yn−k), n = 0, 1, · · ·

is the point that satisfies the condition

y = f(y, y, · · · , y)

.
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3.2 Equilibrium Points

In this section we find the unique positive equilibrium point of the nonlinear
difference equation

yn+1 =
p+ qyn

1 + yn + ryn−k
, n = 0, 1, · · · (3.4)

where the parameters p, q, r and the initial conditions y−k, y−k+1, · · · , y−1, y0

are positive real numbers, and k ∈ {1, 2, · · · }.

To find the equilibrium point, we solve the following equation

y =
p+ qy

1 + y + ry

hence
y (1 + y + ry) = p+ qy

by rearranging the terms, we get:

(1 + r) y2 + (1− q) y − p = 0

Solving this quadratic equation, we get the equilibrium points

y =
(q − 1)±

√
(q − 1)2 + 4p(r + 1)

2(r + 1)

The only positive solution is:

y =
(q − 1) +

√
(q − 1)2 + 4p(r + 1)

2(r + 1)

3.3 Linearized equation

Let f(x, y) have a continuous partial derivatives in an open region R con-
taining a point P (a, b) where fx = fy = 0. Let h and k be increments small
enough to put the point S(a+ h, b+ k) and the line segment joining it to P
inside R. We parametrize the segment PS as

x = a+ th, y = b+ tk, 0 ≤ t ≤ 1.
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If F (t) = f(a+ th, b+ tk), the Chain Rule gives

F ′(t) = fx
dx

dt
+ fy

dy

dt
= hfx + kfy.

Since fx and fy are differentiable, F ′ is a differentiable function of t and

F ′′ =
∂F ′

∂x

dx

dt
+
∂F ′

∂y

dy

dt

=
∂

dx
(hfx + kfy).h+

∂

dy
(hfx + kfy).k

= h2fxx + 2hkfxy + k2fyy.

Since F and F ′ are continuous on [0, 1] and F ′ is differentiable on (0, 1), we
can apply Taylor’s formula with n = 2 and a = 0 to obtain

F (1) = F (0) + F ′(0)(1− 0) + F ′′(c)
(1− 0)2

2

F (1) = F (0) + F ′(0) +
1

2
F ′′(c) (3.5)

for some c between 0 and 1. writing Eq.(3.5) in terms of f gives

f(a+h, b+k) = f(a, b)+hfx(a, b)+kfy(a, b)+
1

2
(h2fxx+2hkfxy+k

2fyy)|(a+ch,b+ck)
(3.6)

Now substitute x and x for a and b, and x−x and y−x for h and k respectively
in Eq.(3.6), and rearrange the result as

f(x, y) = f(x, x)+fx(x, x)(x−x)+fy(x, x)(y−x)+
1

2
((x−x)2fxx+2(x−x)(y−x)fxy++(y−x)2fyy)

(3.7)
where

f(x, x) + fx(x, x)(x− x) + fy(x, x)(y − x)

is called the Linearization term L(x, y) , and

1

2
((x− x)2fxx + 2(x− x)(y − x)fxy + (y − x)2fyy)|(x+c(x−x),x+c(y−x)))

is the error term E(x, y).
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In studying the behavior of the local stability of Eq.(3.7), its enough to
study the homogeneous part

f(x, y) = fx(x, x)x+ fy(x, x)y (3.8)

Which is called the scalar form.

In matrix form Z = AX, where A =

(
fx 0
0 fy

)
and

X =

(
x
y

)
.

Now let x = xn, y = xn−k, and xn+1 = f(x, y) then Eq.(3.8) becomes

xn+1 = f(xn, xn−k) = fx(x, x)xn + fy(x, x)xn−k.

To find the linearized equation of our problem, consider

f(x, y) =
p+ qx

1 + x+ ry

then

∂f

∂x
=
q(1 + x+ ry)− (p+ qx)

(1 + x+ ry)2

=
q + x+ qry − p− qx

(1 + x+ ry)2

=
q − p+ qry

(1 + x+ ry)2

which implies that

∂f

∂x
(y, y) =

q − p+ qry

(1 + y + ry)2

=
q − p+ qry

(1 + y(1 + r))2

similarly
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∂f

∂y
=

0(1 + x+ ry)− r(p+ qx)

(1 + x+ ry)2

=
−r(p+ qx)

(1 + x+ ry)2

thus

∂f

∂y
(y, y) =

−r(p+ qy)

(1 + (1 + r)y)2

so the linearized equation which is associated to Eq.(3.4) about the equi-
librium point y is :

zn+1 =
q − p+ qry

(1 + y(1 + r))2
zn −

r(p+ qy)

(1 + (1 + r)y)2
zn−k

i.e

zn+1 −
q − p+ qry

(1 + y(1 + r))2
zn +

r(p+ qy)

(1 + (1 + r)y)2
zn−k = 0 (3.9)

and its characteristic equation is:

λn+1 − q − p+ qry

(1 + y(1 + r))2
λn +

r(p+ qy)

(1 + (1 + r)y)2
λn−k = 0 (3.10)

which implies

λk+1 − q − p+ qry

(1 + y(1 + r))2
λk +

r(p+ qy)

(1 + (1 + r)y)2
= 0 (3.11)
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3.4 The Local Stability

The following two lemmas are important for the study of local stability.

Lemma 3.5. [11] [13] Assume that a, b ∈ < and k ∈ {1, 2, 3, · · · }. Then a
necessary and sufficient condition for asymptotic stability of the equation

xn+1 + axn + bxn−k = 0, n = 0, 1, 2, · · ·

is that
|a| < 1 + b < 2

Lemma 3.6. [14] [11] Assume that all the roots of the characteristic equa-
tion of the above equation lie inside the unit circle, then the positive equilib-
rium point is locally asymptotically stable.

Theorem 3.7. The unique positive equilibrium point of Eq.(3.4) is locally
asymptotically stable for all values of the parameters p, q, and r provided that
all roots of Eq.(3.11) lie inside the unit circle.
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3.5 Boundedness of Solutions

Theorem 3.8. Every solution of Eq.(3.4) is bounded from above and from
below by a positive constant.

Proof. Let {yn}∞n=−k be a solution of Eq.(3.4), so clearly if the solution is
bounded from above by a constant M , then

yn+1 ≥
p

1 + (1 + r)M

and so its bounded from below.
Now assume for the sake of contradiction that the solution is not bounded
from above, then there exists a subsequence {ynm+1}∞m=0 such that

lim
m→∞

ynm = ∞ , lim
m→∞

ynm+1 = ∞ and ynm+1 = max{yn : n ≤ nm} for

m ≥ 0.

so for Eq.(3.4), we see that

yn+1 < p+ qyn, for n ≥ 0

and so
lim
m→∞

ynm = lim
m→∞

ynm−1 =∞

hence, for sufficiently large m

0 < ynm+1 − ynm =
p+ [(q − 1)− ynm − rynm−k]ynm

1 + ynm + rynm−k
< 0

which is a contradiction.
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3.6 Invariant Interval

Definition 3.9. Invariant Interval of the difference equation Eq.(3.3) is an
interval with the property that if k+ 1 consecutive terms of the solution fall
in I then all subsequent terms of the solution also belong to I. In other
words, I is an invariant interval for Eq.(3.3) if yN−k+1, · · · , yN−1, yN ∈ I for
some N ≥ 0, then yn ∈ I for every n > N .

Theorem 3.10. Let {yn}∞n=−k be a solution of Eq.(3.4). Then the following
statements are true:

1. Suppose p ≤ q and assume that for some N ≥ 0,

yN−k, yN−k+1, · · · , yN ∈ [0,
q − 1 +

√
(q − 1)2 + 4p

2
]

then yn ∈ [0,
q−1+
√

(q−1)2+4p

2
] for all n > N .

2. Suppose q < p < q(rq + 1) and assume that for some N ≥ 0,

yN−k, yN−k+1, · · · , yN ∈ [
p− q
qr

, q]

then yn ∈ [p−q
qr
, q] for all n > N .

3. Suppose p > q(rq + 1) and assume that for some N ≥ 0,

yN−k, yN−k+1, · · · , yN ∈ [q,
p− q
qr

]

then yn ∈ [q, p−q
qr

] for all n > N .

Proof. 1. Set

g(x) =
p+ qx

1 + x
and b =

(q − 1) +
√

(q − 1)2 + 4p

2

and observe that g is an increasing function and g(b) = b, using
Eq.(3.4), we see that when yN−k, yN−k+1, · · · , yN ∈ [0, b], then

yN+1 =
p+ qyN

1 + yN + ryN−k
≤ p+ qyN

1 + yN
= g(yN) ≤ b

The proof follows by induction.
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2. Take the function

f(x, y) =
p+ qx

1 + x+ ry

its clear that this function is increasing in x for y > p−q
qr

. Using Eq.(3.4),

we see that if yN−k, yN−k+1, · · · , yN ∈ [p−q
qr
, q],

then

yN+1 =
p+ qyN

1 + yN + ryN−k
= f(yN , yN−k) ≤ f(q,

p− q
qr

) = q

and by using the condition p < q(rq + 1), we obtain

yN+1 =
p+ qyN

1 + yN + ryN−k
= f(yN , yN−k) ≥ f(

p− q
qr

, q) =
q(pr + p− q)

(rq)2 + rq + p− q
>
p− q
qr

.

and the proof follows by induction.

3. Take the function

f(x, y) =
p+ qx

1 + x+ ry

its clear that this function is decreasing in x for y < p−q
qr

. Using

Eq.(3.4), we see that for yN−k, yN−k+1, · · · , yN ∈ [q, p−q
qr

],
then

yN+1 =
p+ qyN

1 + yN + ryN−k
= f(yN , yN−k) ≥ f(

p− q
qr

,
p− q
qr

) = q

and by using the condition p > q(rq + 1), we obtain

yN+1 =
p+ qyN

1 + yN + ryN−k
= f(yN , yN−k) ≤ f(q, q) =

p+ q2

1 + (r + 1)q
<
p− q
qr

The proof follows by induction.
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3.7 Existence of Two cycles

Definition 3.11. Let {yn}∞n=−k be a solution of Eq.(3.4). We say that the
solution has a prime period two if the solution eventually takes the form:

· · · , φ, ψ, φ, ψ, φ, ψ, · · ·

where φ, ψ are distinct and positive.

Theorem 3.12. If k is even, then Eq.(3.4) has no nonnegative distinct prime
period two solution.

Proof. Let k even, assume for the sake of contradiction that there is distinct
nonnegative real numbers φ, ψ such that

· · · , φ, ψ, φ, ψ, φ, ψ, · · ·

is prime period two solution of Eq.(3.4), then φ, ψ satisfy :

ψ =
p+ qφ

1 + φ+ rφ

and

φ =
p+ qψ

1 + ψ + rψ

then by substituting φ into the equation of ψ, we get easily by a simple cal-
culation that

(1 + r + q)ψ2 + (1− q2)ψ − (p+ qp) = 0

solving this quadratic equation for ψ, we get

ψ =
(q2 − 1)±

√
(q2 − 1)2 + 4(p+ qp)(1 + r + q)

2(1 + r + q)

but √
(q2 − 1)2 + 4(p+ qp)(1 + r + q) > (q2 − 1)
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and ψ is nonnegative, then

ψ =
(q2 − 1) +

√
(q2 − 1)2 + 4(p+ qp)(1 + r + q)

2(1 + r + q)

Now again the same steps for φ, substituting ψ into φ, we get that

φ =
(q2 − 1) +

√
(q2 − 1)2 + 4(p+ qp)(1 + r + q)

2(1 + r + q)

which implies
ψ = φ

which contradicts the hypothesis that ψ and φ are distinct nonnegative real
numbers.

Theorem 3.13. If k is odd, then Eq.(3.4), has no nonnegative distinct prime
period two solution.

Proof. Let k be odd, and assume that for the sake of contradiction that there
is distinct nonnegative real numbers φ and ψ such that

· · · , φ, ψ, φ, ψ, φ, ψ, · · ·

is prime period two solution of Eq.(3.4), then φ, ψ satisfy :

φ =
p+ qψ

1 + ψ + rφ

and

ψ =
p+ qφ

1 + φ+ rψ

by multiplying, we get

φ+ φψ + rφ2 = p+ qψ
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ψ + φψ + rψ2 = p+ qφ

by rearranging the above equation by some algebra we get:

q(ψ − φ) + (ψ − φ) + r(ψ2 − φ2) = 0

q(ψ − φ) + (ψ − φ) + r(ψ − φ)(ψ + φ) = 0

we can divide the above equation by (ψ − φ), since φ 6= ψ, then

q + 1 + r(ψ + φ) = 0

which implies that

ψ + φ =
−q − 1

r

which is a contradiction for that ψ and φ are both nonnegative.

Corollary 3.14. Eq.(3.4) posses no prime period two solution.

3.8 Analysis of Semicycles and Oscillation

Analysis of semicycles of the solution of Eq.(3.4) is a powerful tool for a de-
tailed understanding of the entire character of solutions.

Definition 3.15. Let {xn}∞n=−k be a solution of Eq.(3.3) and x be a posi-
tive equilibrium point. We now give the definitions of positive and negative
semicycle of a solution of Eq.(3.3) relative to the equilibrium point x

• A positive semicycle of a solution {xn}∞n=−k of Eq.(3.3) consists of a
”string” of terms {xl, xl+1, · · · , xm}, all greater than or equal to the
equilibrium x, with l ≥ −1 and m ≤ ∞ such that

either l = −1, or l < −1 and xl−1 < x

and
either m =∞, or m <∞ and xm+1 < x
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• A negative semicycle of a solution {xn}∞n=−k of Eq.(3.3) consists of a
”string” of terms {xl, xl+1, · · · , xm}, all less than the equilibrium x,
with l ≥ −1 and m ≤ ∞ and such that

either l = −1, or l < −1 and xl−1 ≥ x

and
either m =∞, or m <∞ and xm+1 ≥ x

Definition 3.16. ( Oscillation )

1. A sequence {xn} is said to oscillate a bout zero or simply to oscillate
if the terms xn are neither eventually all positive nor eventually all
negative. Otherwise the sequence is called nonoscillatory. A sequence
is called strictly oscillatory if for n0, there exist n1, n2 ≥ n0 such
that xn1xn2 < 0.

2. A sequence xn is said to oscillate about x if the sequence xn − x
oscillates. The sequence xn is called strictly oscillatory about x if
the sequence xn − x is strictly oscillatory.

Analysis of Semicycles Based on Invariant Intervals
The aim of this part is to present the analysis of semicycles of solution

of Eq.(3.4) relative to equilibrium point y and based on invariant interval of
Eq.(3.4).

Let {yn}∞n=−k be a solution of Eq.(3.4). Then observe that the following
identities are true:

yn+1 − q = (qr)[

p−q
qr
− yn−k

1 + yn + ryn−k
] (3.12)

yn+1 − (
p− q
qr

) =
qr(q − p−q

qr
)yn + qr(yn−k − p−q

qr
) + pr(q − yn−k)

qr(1 + yn + ryn−k)
(3.13)

yn−yn+4 =
M(yn − q)

(1 + yn+3)(1 + yn+1 + ryn) + r(p+ qyn+1)
+qr(yn−

p− q
qr

)yn+1+yn+ry2
n−p

(3.14)
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yn+1 − y =
(y − q)(y − yn) + yr(y − yn−k)

1 + yn + ryn−k
(3.15)

where
M = yn+1yn+3 + yn+3 + yn+1 + rynyn+3

so the proof of the following lemmas are straight forward consequence of
the above identities.

Lemma 3.17. Suppose that p > q(qr + 1) and let {yn}∞n=−k be solutions of
Eq.(3.4), then the following statements are true:

1. If for some N ≥ 0, yN−k <
p−q
qr

. Then yN+1 > q.

2. If for some N ≥ 0, yN−k = p−q
qr

. Then yN+1 = q.

3. If for some N ≥ 0, yN−k >
p−q
qr

. Then yN+1 < q.

4. If for some N ≥ 0, q < yN−k <
p−q
qr

. Then q < yN+1 <
p−q
qr

.

5. If for some N ≥ 0, q < yN−k, · · · , yN−1, yN < p−q
qr

. Then q < yn <
p−q
qr

.

That is [q, p−q
qr

] is an invariant interval for Eq.(3.4).

6. If for some N ≥ 0, y < yN−k, and y < yN . Then yN+1 < y.

7. If for some N ≥ 0, y ≥ yN−k and y ≥ yN . Then yN+1 ≥ y.

8. q < y < p−q
qr

.
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Proof. 1. If for some N ≥ 0, yN−k <
p−q
qr

. Then we can conclude that

yN+1 − q > 0 using Eq.(3.12). Which implies that yN+1 > q.

2. If for some N ≥ 0, yN−k = p−q
qr

. Then yN+1 − q = 0 using Eq.(3.12),
which implies that yN+1 = q.

3. If for some N ≥ 0, yN−k >
p−q
qr

. Then yN+1 − q < 0 using Eq.(3.12),
which implies that yN+1 < q.

4. If for some N ≥ 0, q < yN−k <
p−q
qr

, we can see that if yN−k <
p−q
qr

.

Then yN+1 > q by (1). Similarly if yN−k > q, then yN+1 − p−q
qr

< 0

which implies that yN+1 <
p−q
qr

using Eq.(3.13). Then we conclude that

q < yN+1 <
p−q
qr

.

5. We see in (4), that If for some N ≥ 0, q < yN−k <
p−q
qr

. Then q <

yN+1 <
p−q
qr

. Now we can see that if q < yN−k, ..., yN−1, yN < p−q
qr

, then

yN+1, yN+2, ... ∈ (q, p−q
qr

) using Eq.(3.13), which implies that q < yn <
p−q
qr

. That is [q, p−q
qr

] is invariant interval for Eq.(3.4).

6. If for some N ≥ 0, y < yN−k, and y < yN . Then using Eq.(3.15), we
see that yN+1 − y < 0, i.e, yN+1 < y.

7. If for some N ≥ 0, y ≥ yN−k, and y ≥ yN . Then using Eq.(3.15), we
see that yN+1 − y ≥ 0, i.e, yN+1 ≥ y.

8. Using (5), since [q, p−q
qr

] is invariant interval, then q < y < p−q
qr

.

The following theorem is the extension of theorem(2.19).

Corollary 3.18. Every nontrivial and oscillatory solution of Eq.(3.4) which
lies in the interval [q, p−q

qr
] oscillates about the equilibrium point y, with semi-

cycle of length at most k + 1.

Proof. Corollary(3.18) is extension of Theorem(??), where Eq.(3.4) is de-
creasing in both arguments in [q, p−q

qr
]. Then every oscillatory solution of

Eq.(3.4) has a semicycle of length at most k + 1.
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Lemma 3.19. Suppose that q < p < q(qr + 1) and let {yn}∞n=−k be solution
of equation (3.4), then the following statements are true:

1. If for some N ≥ 0, yN−k <
p−q
qr

. Then yN+1 > q.

2. If for some N ≥ 0, yN−k = p−q
qr

. Then yN+1 = q.

3. If for some N ≥ 0, yN−k >
p−q
qr

. Then yN+1 < q.

4. If for some N ≥ 0, p−q
qr

< yN−k < q. Then p−q
qr

< yN+1 < q.

5. If for some N ≥ 0, p−q
qr

< yN−k, · · · , yN−1, yN < q. Then p−q
qr

< yn < q.

That is [p−q
qr
, q] is an invariant interval for Eq.(3.4).

6. p−q
qr

< y < q.

Proof. 1. If for some N ≥ 0, yN−k <
p−q
qr

. Then we can conclude that

yN+1 − q > 0 using Eq.(3.12). Which implies that yN+1 > q.

2. If for some N ≥ 0, yN−k = p−q
qr

. Then yN+1 − q = 0 using Eq.(3.12),
which implies that yN+1 = q.

3. If for some N ≥ 0, yN−k >
p−q
qr

. Then yN+1 − q < 0 using Eq.(3.12),
which implies that yN+1 < q.

4. If for some N ≥ 0, p−q
qr

< yN−k < q, we can see that if yN−k >
p−q
qr

.

Then yN+1 < q by (1). Similarly if yN−k < q, then yN+1 − p−q
qr

> 0

which implies that yN+1 >
p−q
qr

using Eq.(3.13). Then we conclude that
p−q
qr

< yN+1 < q.

5. We see in (4), that If for some N ≥ 0, p−q
qr

< yN−k < q. Then p−q
qr

<

yN+1 < q. Now we can see that if p−q
qr

< yN−k, ..., yN−1, yN < q, then

yN+1, yN+2, ... ∈ (p−q
qr
, q) using Eq.(3.13), which implies that p−q

qr
< yn <

q. That is [p−q
qr
, q] is invariant interval for Eq.(3.4).
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6. Using (5), since [q, p−q
qr

] is invariant interval, then p−q
qr

< y < q.

The following theorem is extension of theorem(2.20).

Corollary 3.20. Every nontrivial and oscillatory solution {yn}∞n=−k of Eq.(3.4)
which lies in the interval [p−q

qr
, q] oscillates about the equilibrium point y, with

semicycle of length at least k + 1.

Proof. Corollary(3.20) is extension of Theorem(??), where Eq.(3.4) is in-
creasing in x for each fixed y, and decreasing in y for each fixed x in the
interval [p−q

qr
, q]. Then every oscillatory solution of Eq.(3.4) oscillates about

the equilibrium point y with semicycle of length at least k + 1.

Finally: we will discuss thoroughly the analysis of semicycles of the solu-
tion {yn}∞n=−k under the assumption that p = q(qr + 1).

In this case Eq.(3.4) reduces to the following

yn+1 =
q + rq2 + qyn

1 + yn + ryn−k

and the equilibrium point is y = q, then the identities(3.12) through
(3.15) reduces yn+1 − q, to

yn+1 − q =
qr

1 + yn + ryn−k
(q − yn−k) (3.16)

Furthermore, if qr < 1, then

lim
n→∞

yn = y. (3.17)

Remark

1. Identity (3.16) follows by straight forward computation.

2. Limit in (3.17) is a consequence of the fact that in this case qr ∈ (0, 1)
and Eq.(3.4) has no prime period two solution.
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Lemma 3.21. Suppose that p = q(qr + 1) and let {yn}∞n=−k be solutions of
Eq.(3.4), then the following statements are true:

1. If for some N ≥ 0, yN−k < q. Then yN+1 > q.

2. If for some N ≥ 0, yN−k = q. Then yN+1 = q.

3. If for some N ≥ 0, yN−k > q. Then yN+1 < q.

Proof. 1. If for some N ≥ 0, yN−k < q, then by substitute p = q(qr + 1)
in Eq.(3.12), we get yN+1 − q > 0 which implies that yN+1 > q.

2. If for some N ≥ 0, yN−k = q, then by substitute p = q(qr + 1) in
Eq.(3.12), we get yN+1 − q = 0 which implies that yN+1 = q.

3. If for some N ≥ 0, yN−k > q, then by substitute p = q(qr + 1) in
Eq.(3.12), we get yN+1 − q < 0 which implies that yN+1 < q.

Theorem 3.22. Suppose that p = q(qr+ 1) and let {yn}∞n=−k be a nontrivial
solution of Eq.(3.4), then {yn}∞n=−k oscillates about the equilibrium point q.

Proof. We notice that by using lemma(3.21) if yN−k < q then yN+1 > q, and
if yN−k > q then yN+1 < q, which means that the solution {yn}∞n=−k oscillates
about the equilibrium point q.

Now assume that the solutions does not eventually lie in the invariant
interval.

Assume that p > q(qr + 1), let {yn}∞n=−k be a solution of Eq.(3.4) which
does not eventually lie in the interval I = [q, p−q

qr
], then it can be observed

that the solution oscillates about the equilibrium point relative to [q, p−q
qr

]
essentially in one of the following two ways:
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• k + 1 consecutive terms in (p−q
qr
,∞), are followed by k + 1 consecutive

terms in (p−q
qr
,∞), and so on. The solution never meets the interval

(q, p−q
qr

).

• There exists exactly k terms in (p−q
qr
,∞) which is followed by k terms

in (q, p−q
qr

) which is followed by k terms in (0, 1) which is followed by k

terms in (q, p−q
qr

) which is followed by k terms in (p−q
qr
,∞) and so on.

The solution meets consecutively the intervals :

· · · , (p− q
qr

,∞), (q,
p− q
qr

), (0, 1), (q,
p− q
qr

), (
p− q
qr

,∞), · · ·

in order with k terms per interval.

The situation is essentially the same relative to the interval (p−q
qr
, q),

when q < p < q(qr + 1).
And the same thing is done when p = q(qr + 1).
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3.9 Global Asymptotic stability

The next results are about the global stability for the positive equilibrium of
Eq.(3.4).

Theorem 3.23. :[1] Let I = [a, b] be an interval of real numbers and assume

f : [a, b]× [a, b]→ [a, b]

is continuous function satisfying the following properties

1. f(x, y)is non increasing in each of it’s arguments;

2. If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f(M,M)

M = f(m,m)

then m = M .

Then
yn+1 = f(yn, yn−k), n = 0, 1, · · · (3.18)

has a unique equilibrium y ∈ [a, b] and every solution of Eq.(3.18) con-
verges to y.

Theorem 3.24. :[1] Let I = [a, b] be an interval of real numbers and assume

f : [a, b]× [a, b]→ [a, b]

is continuously function satisfying the following properties

1. f(x, y)is non decreasing in x for each y ∈ [a, b] and f(x, y)is non in-
creasing in y for each x ∈ [a, b]

2. If (m,M) ∈ [a, b]× [a, b] is a solution of the system
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m = f(m,M)

M = f(M,m)

then m = M .

Then Eq.(3.18) has a unique equilibrium y ∈ [a, b] and every solution of
Eq.(3.18) converges to y.

Now we will apply these theorems on our equation.

Theorem 3.25. Assume that p > q(qr+ 1), then the positive equilibrium of
Eq.(3.4) on the interval [q, p−q

qr
] is globally asymptotically stable.

Proof. this proof can easily done depending on theorem (3.23).
Assume that p > q(qr + 1) and consider the function

f(x, y) =
p+ qx

1 + x+ ry

First, note that f(x, y) on the interval [q, p−q
qr

] is non increasing function
in both of its arguments x, y.

Second, Let (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(m,m) = M and f(M,M) = m

then

M =
p+ qm

1 +m+ rm

and

m =
p+ qM

1 +M + rM

But we showed before that our equation has no periodic two solution,
then the only solution is m = M .
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Then both conditions of theorem(3.23) hold, therefore if y is an equilib-
rium point of Eq.(3.4), then every solution of Eq.(3.4) converges to y in the
interval [q, p−q

qr
].

As y is asymptotically stable, then it is globally asymptotically stable on
[q, p−q

qr
].

Theorem 3.26. Assume that q < p < q(qr+1), then the positive equilibrium
of Eq.(3.4) on the interval [p−q

qr
, q] is globally asymptotically stable.

Proof. This proof can be easily done depending on theorem (3.24).
Assume that q < p < q(qr + 1) and consider the function

f(x, y) =
p+ qx

1 + x+ ry

First, note that f(x, y) on the interval [p−q
qr
, q] is nondecreasing function

in x, and nonincreasing y.

Second, Let (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(m,M) = m and f(M,m) = M

then

m =
p+ qm

1 +m+ rM

and

M =
p+ qM

1 +M + rm

But we showed before that our equation has no periodic two solution,
then the only solution is m = M .

Then both conditions of theorem (3.24) hold, then if y is an equilibrium
point of Eq.(3.4), then every solution of Eq.(3.4) converges to y in the Interval
[p−q
qr
, q].

as y is asymptotically stable, then it is globally asymptotically stable on
[p−q
qr
, q].
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Theorem 3.27. Assume that p ≤ q, then the positive equilibrium of Eq.(3.4)

on the interval [0,
(q−1)+

√
(q−1)2+4p

2
] is globally asymptotically stable.

Proof. This proof can be easily done depending on theorem(3.24).
Assume that p ≤ q and consider the function

f(x, y) =
p+ qx

1 + x+ ry

First, note that f(x, y) on the interval [0,
(q−1)+

√
(q−1)2+4p

2
] is nondecreas-

ing function in x, and nonincreasing y.

Second, Let (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(m,M) = m and f(M,m) = M

then

m =
p+ qm

1 +m+ rM

and

M =
p+ qM

1 +M + rm

But we showed before that our equation has no periodic two solution,
then the only solution is m = M .
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3.10 Numerical Discussion

In this section, we will study the global stability of our equation numerically
based on some data and figures that we can get using MATLAB 6.5.

Example 3.1. Assume Eq.(3.2) holds. take k = 3, p = 4, r = 2 and q = 1.
So the equation will be

yn+1 =
4 + yn

1 + yn + 2yn−3

, n = 0, 1, 2, · · ·

We assumed that the initial points {x0, x1, x2, x3} all to be ∈ (0,∞) and are
{0.1, 0.2, 0.3, 0.4}.

The theoretical positive equilibrium point will be y = 1.154700538.

Figure.1. shows the behavior of the equilibrium point of the yn+1 =
4+yn

1+yn+2yn−3
. It shows that the equilibrium point y is globally asymptotically

stable, as we have shown theoretically.



67

Table.1. shows that the numerically equilibrium point y = 1.1547.

N X(n) N X(n) N X(n) N X(n)
1 0.1000 26 1.1458 51 1.1544 276 1.1547
2 0.2000 27 1.1378 52 1.1545 277 1.1547
3 0.3000 28 1.1422 53 1.1552 278 1.1547
4 0.4000 29 1.1780 54 1.1547 279 1.1547
5 2.7500 30 1.1585 55 1.1549 280 1.1547
6 1.6265 31 1.1634 56 1.1548 281 1.1547
7 1.7438 32 1.1609 57 1.1544 282 1.1547
8 1.6208 33 1.1426 58 1.1547 283 1.1547
9 0.6921 34 1.1532 59 1.1546 284 1.1547

10 0.9488 35 1.1503 60 1.1547 285 1.1547
11 0.9103 36 1.1516 61 1.1548 286 1.1547
12 0.9531 37 1.1611 62 1.1547 287 1.1547
13 1.4841 38 1.1553 63 1.1547 288 1.1547
14 1.2516 39 1.1570 64 1.1547 289 1.1547
15 1.2896 40 1.1562 65 1.1546 290 1.1547
16 1.2607 41 1.1513 66 1.1547 291 1.1547
17 1.0061 42 1.1545 67 1.1547 292 1.1547
18 1.1102 43 1.1535 68 1.1547 293 1.1547
19 1.0897 44 1.1540 69 1.1547 294 1.1547
20 1.1038 45 1.1565 70 1.1547 295 1.1547
21 1.2400 46 1.1547 71 1.1547 296 1.1547
22 1.1748 47 1.1553 72 1.1547 297 1.1547
23 1.1885 48 1.1551 73 1.1547 298 1.1547
24 1.1803 49 1.1538 74 1.1547 299 1.1547
25 1.1116 50 1.1547 75 1.1547 300 1.1547

Table 1: Solution of DE yn+1 = 4+yn

1+yn+2yn−3
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Example 3.2. Assume Eq.(3.2) holds. take k = 3, p = 3, r = 4 and q = 2.
So the equation will be

yn+1 =
3 + 2yn

1 + yn + 4yn−3

, n = 0, 1, 2, · · ·

We assumed that the initial points {x0, x1, x2, x3} all to be ∈ (0,∞) and are
{0.1, 0.2, 0.3, 0.4}.

The theoretical positive equilibrium point will be y = 0.881024967.

Figure.2. shows the behavior of the equilibrium point of the yn+1 =
3+2yn

1+yn+4yn−3
. Which shows that the equilibrium point y is globally asymptoti-

cally stable, as we have shown theoretically.
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Table.2. shows that the numerically equilibrium point y = 0.8810.

N X(n) N X(n) N X(n) N X(n)
1 0.1000 26 0.7938 51 0.8770 276 0.8810
2 0.2000 27 0.7283 52 0.8540 277 0.8810
3 0.3000 28 0.7151 53 0.8475 278 0.8810
4 0.4000 29 0.8071 54 0.8586 279 0.8810
5 2.1111 30 0.9261 55 0.8790 280 0.8810
6 1.8466 31 1.0027 56 0.8986 281 0.8810
7 1.6540 32 1.0292 57 0.9071 282 0.8810
8 1.4828 33 0.9621 58 0.9013 283 0.8810
9 0.5459 34 0.8690 59 0.8865 284 0.8810

10 0.4581 35 0.8058 60 0.8709 285 0.8810
11 0.4850 36 0.7786 61 0.8623 286 0.8810
12 0.5353 37 0.8099 62 0.8641 287 0.8810
13 1.0945 38 0.8740 63 0.8739 288 0.8810
14 1.3214 39 0.9315 64 0.8862 289 0.8810
15 1.3241 40 0.9637 65 0.8945 290 0.8810
16 1.2649 41 0.9470 66 0.8950 291 0.8810
17 0.8324 42 0.8992 67 0.8886 292 0.8810
18 0.6554 43 0.8530 68 0.8792 293 0.8810
19 0.6201 44 0.8245 69 0.8719 294 0.8810
20 0.6348 45 0.8283 70 0.8701 295 0.8810
21 0.8600 46 0.8584 71 0.8739 296 0.8810
22 1.0532 47 0.8949 72 0.8807 297 0.8810
23 1.1264 48 0.9224 73 0.8869 298 0.8810
24 1.1259 49 0.9253 74 0.8894 299 0.8810
25 0.9435 50 0.9052 75 o.8874 300 0.8810

Table 2: Solution of DE yn+1 = 3+2yn

1+yn+4yn−3
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Example 3.3. Assume Eq.(3.2) holds. take k = 3, p = 4, r = 1 and q = 5.
So the equation will be

yn+1 =
4 + 5yn

1 + yn + yn−3

, n = 0, 1, 2, · · ·

We assumed that the initial points {x0, x1, x2, x3} all to be ∈ (0,∞) and are
{0.1, 0.2, 0.3, 0.4}.

The theoretical positive equilibrium point will be y = 2.732050808.

Figure.3. shows the behavior of the equilibrium point of the yn+1 =
4+5yn

1+yn+yn−3
. Which shows that the equilibrium point y is globally asymptot-

ically stable, as we have shown theoretically.
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Table.3. shows that the numerically equilibrium point y = 2.7321.

N X(n) N X(n) N X(n) N X(n)
1 0.1000 26 2.8351 51 2.7349 276 2.7321
2 0.2000 27 2.7572 52 2.7356 277 2.7321
3 0.3000 28 2.6859 53 2.7346 278 2.7321
4 0.4000 29 2.6522 54 2.7328 279 2.7321
5 4.0000 30 2.6607 55 2.7311 280 2.7321
6 4.6154 31 2.6961 56 2.7302 281 2.7321
7 4.5774 32 2.7390 57 2.7303 282 2.7321
8 4.4981 33 2.7687 58 2.7311 283 2.7321
9 2.7890 34 2.7753 59 2.7321 284 2.7321

10 2.1352 35 2.7624 60 2.7328 285 2.7321
11 1.9029 36 2.7397 61 2.7331 286 2.7321
12 1.8260 37 2.7193 62 2.7328 287 2.7321
13 2.3384 38 2.7094 63 2.7323 288 2.7321
14 2.8668 39 2.7113 64 2.7318 289 2.7321
15 3.1777 40 2.7215 65 2.7315 290 2.7321
16 3.3127 41 2.7337 66 2.7316 291 2.7321
17 3.0918 42 2.7422 67 2.7318 292 2.7321
18 2.7964 43 2.7444 68 2.7321 293 2.7321
19 2.5784 44 2.7408 69 2.7323 294 2.7321
20 2.4513 45 2.7344 70 2.7323 295 2.7321
21 2.4845 46 2.7286 71 2.7323 296 2.7321
22 2.6147 47 2.7256 72 2.7321 297 2.7321
23 2.7569 48 2.7261 73 2.7320 298 2.7321
24 2.8647 49 2.7290 74 2.7319 299 2.7321
25 2.8859 50 2.7324 75 2.7319 300 2.7321

Table 3: Solution of DE yn+1 = 4+5yn

1+yn+yn−3
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Chapter 4

Special Cases α β A B C = 0
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4 Special Cases α β A B C = 0

In this chapter we examine the character of solution of the equation

xn+1 =
α + βxn

A+Bxn + Cxn−k
(4.1)

where one or more of the parameters in Eq.(4.1)are zero.

Observe that some of these equations are meaningless like the case when
the parameters in the denominator are zero, and some of them are quite in-
teresting and have been studied by many researchers.

If we assume the parameters α, β,A,B,C to be nonnegative, then Eq.(4.1)
contains, as special cases, 21 difference equations with positive parameters.
One of them is Eq.(4.1). Of the remaining 20 equations, some equations are
trivial, Linear, or reducible to linear, or of the Riccati type

yn+1 =
ayn + b

cyn + d
, n = 0, 1, · · ·

with nonnegative parameters a, b, c, d which itself is reducible to a linear
equation by a well known change of variables.

Now we will mention the 20 equations with some details about each one.

4.1 One parameter = 0

In this section we examine the character of solution of Eq.(4.1) where one
parameter in Eq.(4.1) = 0. There are five such equations, namely:

xn+1 =
α + βxn
A+Bxn

, n = 0, 1, 2... (4.2)

xn+1 =
α + βxn
A+ Cxn−k

, n = 0, 1, 2... (4.3)

xn+1 =
α + βxn

Bxn + Cxn−k
, n = 0, 1, 2... (4.4)
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xn+1 =
α

A+Bxn + Cxn−k
, n = 0, 1, 2... (4.5)

xn+1 =
βxn

A+Bxn + Cxn−k
, n = 0, 1, 2... (4.6)

where the parameters α, β,A,B,C are posititve real numbers and the initial
conditions x−k, x−k+1, · · · , x0 are arbitrary nonnegative real numbers.

The Eq.(4.2) was investigated in [14], which is in fact a Riccati equation.

The change of variables

xn =
A

C
yn

reduces Eq.(4.3) to the difference equation

yn+1 =
p+ qyn
1 + yn−k

, n = 0, 1, · · · (4.7)

where

p =
αC

A2
and q =

β

A

Eq.(4.7) has a unique positive equilibrium point y given by

y =
(q − 1) +

√
(q − 1)2 + 4p

2

The Eq.(4.7) was investigated in [6]. The authors studied the global stabil-
ity, boundedness of positive solutions, and character of semicycles of Eq.(4.7).

The change of variables

xn =
β

B
yn

reduces Eq.(4.4) to the difference equation

yn+1 =
p+ yn

yn + qyn−k
, n = 0, 1, 2... (4.8)

where

p =
αB

β2
and q =

C

B
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with p, q ∈ (0,∞) and the initial conditions y−k, · · · , y0 are nonnegative real
numbers. Eq.(4.8) was investigated in [5]. They have concentrated on in-
variant intervals, the character of semicycles, the global stability, and the
boundedness.

The change of variables

xn =
α

A
yn

reduces the equation Eq.(4.5) to the difference equation

yn+1 =
1

1 + pyn + qyn−k
, n = 0, 1, 2, · · · (4.9)

where

p =
αB

A2
and q =

αC

A2

The unique positive equilibrium point of Eq.(4.9) is

y =
−1 +

√
1 + 4(p+ q)

2(p+ q)

we can show easily that this equilibrium point is locally asymptotically
stable, for all values of parameters, and that Eq.(4.9) has no prime period
two solutions.

By applying linearized stability and theorem(2.13), we can also show eas-
ily that this positive equilibrium point of Eq.(4.9) is globally asymptotically
stable.

The change of variables

xn =
A

C
yn

reduces Eq.(4.6) to the difference equation

yn+1 =
yn

1 + pyn + qyn−k
, n = 0, 1, · · · (4.10)

where

p =
β

A
and q =

B

C
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Eq.(4.10) always has zero as an equilibrium point, and when p > 1, it
also has the unique positive equilibrium point

y =
p− 1

q + 1

The following results are a straight forward consequence of the theorem(2.21)
of the global asymptotic stability of the zero equilibrium point and theorem(2.22).

Theorem 4.1. Assume p ≤ 1, then the zero equilibrium of Eq.(4.10) is glob-
ally asymptotically stable.

Theorem 4.2. Assume that yn−k, yn−k+1, · · · , y−1, y0 ∈ (0,∞) and p > 1
then the positive equilibrium of Eq.(4.10) is globally asymptotically stable.
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4.2 Two parameters are zero

In this section we examine the character of solutions of Eq.(4.1) where two
parameters in Eq.(4.1) are zero. There are nine such equations, namely:

xn+1 =
α

A+Bxn
, n = 0, 1, 2... (4.11)

xn+1 =
α

A+ Cxn−k
, n = 0, 1, 2... (4.12)

xn+1 =
α

Bxn + Cxn−k
, n = 0, 1, 2... (4.13)

xn+1 =
βxn

A+Bxn
, n = 0, 1, 2... (4.14)

xn+1 =
βxn

A+ Cxn−k
, n = 0, 1, 2... (4.15)

xn+1 =
βxn

Bxn + Cxn−k
, n = 0, 1, 2... (4.16)

xn+1 =
α + βxn

A
, n = 0, 1, 2... (4.17)

xn+1 =
α + βxn
Bxn

, n = 0, 1, 2... (4.18)

xn+1 =
α + βxn
Cxn−k

, n = 0, 1, 2... (4.19)

where the parameters α, β,A,B,C are positive real numbers and the ini-
tial conditions x−k, x−k+1, · · · , x0 are arbitrary nonnegative real numbers.

Two of these equations, namely Eq.(4.11) and Eq.(4.14) are Riccati- type
difference equation.

Its interesting to note that the change of variables

xn =
1

yn

reduces the Riccati equation Eq.(4.14) to the linear equation

yn+1 =
A

β
yn +

B

β
, n = 0, 1, · · ·
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for which the global behavior of solutions is easily derived.

Eq.(4.12) is essentially Riccati equation. Indeed if {xn} is a solution of
Eq.(4.12), then the subsequences {x2n−1} and {x2n} satisfy the Riccati equa-
tion of the form of Eq.(4.11).

Now consider the equation

xn+1 =
α

Bxn + Cxn−k

The Eq.(4.13) which by change of variables

xn =

√
α

yn

reduces to the difference equation

yn+1 =
B

yn
+

C

yn−k
, n = 0, 1, 2, ... (4.20)

where the initial conditions y−k, · · · , y0 are arbitrary nonnegative real num-
bers.

The only positive equilibrium point is y =
√
B + C. When k = 1,

Eq.(4.20) was investigated in [14]. It was shown that every solution is
bounded, it also shown that the equilibrium point

y =
√
B + C

is globally asymptotically stable.

In this monograph, we investigate the difference Eq.(4.20) when k ∈
{2, 3, ...}.

Theorem 4.3. Every solution of Eq.(4.20) is bounded.

Proof. Assume for the sake of contradiction that there exists a solution
{yn}∞n=−k which is neither bounded from above nor from below. That is

lim
n→∞

sup yn =∞ and lim
n→∞

inf yn = 0
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then clearly, we can find indices i and j with

1 ≤ i < j

such that
yi > yn > yj for all n ∈ {−k, ..., j − 1}

Hence

yj =
B

yj−1

+
C

yj−k−1

>
B + C

yi

and

yi =
B

yi−1

+
C

yi−k−1

≤ B + C

yj

that is
B + C < yiyj < B + C

which is impossible.

To investigate the stability of Eq.(4.20), let f(x, y) = B
x

+ C
y

.

Theorem 4.4. The equilibrium point y =
√
B + C is unstable when k is

even.

Proof. The linearized equation of Eq.(4.20) about the equilibrium point

y =
√
B + C

is

zn+1 = − B

B + C
zn −

C

B + C
zn−k, n = 0, 1, 2, ...

and its characteristic equation is

λk+1 +
B

B + C
λk +

C

B + C
= 0

Then the proof follows immediately from the linearized stability theorem(2.12).
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Before we examine the existence of two cycles of Eq.(4.20), it is worthwhile
to mention that when C = 1 and k = 2, it was shown by R.Devault and
G.Ladas and S.W. Schultz in [8], that every positive solution of the difference
equation

yn+1 =
B

yn
+

1

yn−2

converges to a period two solution.

Theorem 4.5. The Eq.(4.20) has prime period two solution if and only if k
is even.

Proof. Let
...,Φ,Ψ,Φ,Ψ, ...

be a period two solution of the Eq.(4.20), then

• If k is odd, then

Φ =
B

Ψ
+
C

Φ
and ψ =

B

Φ
+
C

Ψ

thus
φ = ψ

which is contradiction.

• If k is even, then

Φ =
B

Ψ
+
C

Ψ
and ψ =

B

Φ
+
C

Φ

which implies that
φψ = B + C

and the period two solution must be of the form

..., φ,
B + C

φ
, φ,

B + C

φ
, ...

which completes the proof.
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Theorem 4.6. Let {yn}∞n=−k be a solution of Eq.(4.20). Then the following
statements are true:

1. Suppose that B+C > 1 and assume that for some N ≥ 0, yN−k, ..., yN−1, yN ∈
[1, B + C]. Then yn ∈ [1, B + C] for all n > N .

2. Suppose that B+C < 1 and assume that for some N ≥ 0, yN−k, ..., yN−1, yN ∈
[B + C, 1]. Then yn ∈ [B + C, 1] for all n > N .

3. Suppose that B > C and assume that for some N ≥ 0,yN−k, ..., yN−1, yN ∈
[C, B

C
+ 1]. Then yn ∈ [C, B

C
+ 1] for all n > N .

4. Suppose that B < C and assume that for some N ≥ 0,yN−k, ..., yN−1, yN ∈
[B, C

B
+ 1]. Then yn ∈ [B, C

B
+ 1] for all n > N .

Proof. The proof of this theorem is based on monotonic character.

1. Assume that for some N > 0, yN−k, ..., yN−1, yN ∈ [1, B + C]. Then

yN+1 =
B

yN
+

C

yN−k
≤ B + C

and

yN+1 =
B

yN
+

C

yN−k
≥ B

B + C
+

C

B + C
= 1

2. Assume that for some N > 0, yN−k, ..., yN−1, yN ∈ [B + C, 1]. Then

yN+1 =
B

yN
+

C

yN−k
≤ B

B + C
+

C

B + C
= 1

and

yN+1 =
B

yN
+

C

yN−k
≥ B + C

3. Assume that for some N > 0, yN−k, ..., yN−1, yN ∈ [C, B
C

+ 1]. Then

yN+1 =
B

yN
+

C

yN−k
≤ B

C
+
C

C
=
B

C
+ 1

and

yN+1 =
B

yN
+

C

yN−k
≥ B

B+C
C

+
C
B+C
C

= C
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4. Assume that for some N ≥ 0, yN−k, ..., yN−1, yN ∈ [B, C
B

+ 1]. Then

yN+1 =
B

yN
+

C

yN−k
≤ B

B
+
C

B
=
C

B
+ 1

and

yN+1 =
B

yN
+

C

yN−k
≥ B

B+C
B

+
C
B+C
B

= B

The proof is complete.

Theorem 4.7. Let k be odd, then y =
√
B + C is globally asymptotically

stable equilibrium point of Eq.(4.20).

Proof. For u, v ∈ (0,∞), set

f(u, v) =
B

u
+
C

v

Then f : (0,∞)×(0,∞)→ (0,∞) is continuous function and is nonincreasing
in both its argument. Let (m,M) ∈ (0,∞) is a solution of the system

m = f(M,M) and M = f(m,m)

then m = M when k is odd. By using Theorem(2.18), y =
√
B + C is

globally asymptotically stable equilibrium point of Eq.(4.20). This completes
the proof.

Finally, we introduce the analysis od semicycles of Eq.(4.20) in the fol-
lowing theorem.

Theorem 4.8. Every oscillatory solution of Eq.(4.20) has semicycle of length
at most k

Proof. The proof follows from theorem (2.19) by observing that the function
f(u, v) = B

u
+ C

v
is decreasing in both its arguments.

Thus the proof is complete.
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The change of variables

xn =
A

C

reduces Eq.(4.15) to Pielou’s Difference Equation

yn+1 =
pyn

1 + yn−k
(4.21)

where

p =
β

A
when

p ≤ 1

It follows from Eq.(4.21) that every solution converges to 0.
Furthermore, 0 is locally asymptotically stable when p ≤ 1 and unstable
when p > 1.

When
p > 1

the zero equilibrium of Eq.(4.21) is unstable and possesses the unique positive
equilibrium

y = p− 1

which is locally asymptotically stable.

We can obtain from the above the following theorem:

Theorem 4.9. 1. Assume
p ≤ 1

Then the zero equilibrium of Eq.(4.21) is globally asymptotically stable.

2. Assume y0 ∈ (0,∞) and
p > 1

Then the positive equilibrium

y = p− 1

of Eq.(4.21) is globally asymptotically stable.
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The Eq.(4.16) which is by the change of variables

xn =
β

Cyn

reduces it to the difference equation

yn+1 = P +
yn
yn−k

, n = 0, 1, 2, ... (4.22)

where

P =
B

C

and the initial conditions y−k, · · · , y0 are nonnegative real numbers. The
Eq.(4.22) was studied in [2].

Eq.(4.17) is linear .

Eq.(4.18) is a Riccati equation, its solved explicitly to determine the char-
acter of its solution in [10], they showed that the equilibrium point is globally
asymptotically stable.

Eq.(4.19) which by the change of variables

xn =
β

C
yn

reduces to the difference equation

yn+1 =
P + yn
yn−k

(4.23)

where

P =
αC

β2
∈ (0,∞)

and the initial conditions y−k, · · · , y0 are arbitrary nonnegative real numbers.

The unique positive equilibrium point is

y =
1 +
√

1 + 4p

2
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The linearized equation about equilibrium point y is

zn+1 −
2

1 +
√

1 + 4p
zn + zn−k = 0

and its characteristic equation is:

λk+1 − 2

1 +
√

1 + 4p
λk + 1 = 0

.
Remark: For k = 1, the Eq.(4.19) is well known in literature of rational

difference equations as lyness’ Equation [14].

Theorem 4.10. The equilibrium point y = 1+
√

1+4p
2

is unstable.

Proof. The proof follow immediately by theorem(2.14).

Theorem 4.11. The Eq.(4.23) has no positive prime period two solution.

Proof. Assume for the sake of contradiction that there exists a solution of
prime period two

..., φ, ψ, φ, ψ, ...

where φ and ψ are positive and distinct.

• If k is odd. Then we have

φ =
p+ ψ

φ
(4.24)

and

ψ =
p+ φ

ψ
(4.25)

from Eq.(4.24), we get
φ2 = p+ ψ (4.26)

and from Eq.(4.25), we get

ψ2 = p+ φ (4.27)

from Eq.(4.26)and Eq.(4.27), we get

φ+ ψ = −1

which is a contradiction.
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• If k is even. Then we have

φ =
p+ ψ

ψ
(4.28)

and

ψ =
p+ φ

φ
(4.29)

from Eq.(4.28), we get
φψ = p+ ψ (4.30)

and from Eq.(4.29), we get

φψ = p+ φ (4.31)

from Eq.(4.30)and Eq.(4.31), we get

p+ φ = p+ ψ

hence
ψ = φ

which is a contradiction.

This completes the proof.

Theorem 4.12. The equilibrium point y = 1+
√

1+4p
2

of Eq.(4.23) is globally
asymptotically stable.

Proof. For u, v ∈ (0,∞), set f(u, v) = p+u
v

. Then

f : (0,∞)× (0,∞)→ (0,∞)

is continuous function and is nondecreasing in u and nonincreasing in v. Let
(m,M) ∈ (0,∞) is a solution of the system

m = f(m,M) and M = f(M,m)

Then
p+m = p+M

Hence
m = M
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Then by using theorem(3.24),

y =
1 +
√

1 + 4p

2

is globally asymptotically stable equilibrium point of Eq.(4.23).
This completes the proof.

Theorem 4.13. Every oscillatory solution of Eq.(4.23) has semisycle of
length at least k + 1.

Proof. The proof follows immediately from theorem(2.20), by observing that
the function f(x, y) = p+x

y
is increasing in x and decreasing in y. The proof

is complete.

4.3 Three Parameters are Zero

In this section we examine the character of solution of Eq. (4.1) where three
parameters in Eq.(4.1) are zero. There are 6 such equations, namely:

xn+1 =
α

A
, n = 0, 1, 2... (4.32)

xn+1 =
α

Bxn
, n = 0, 1, 2... (4.33)

xn+1 =
α

Cxn−k
, n = 0, 1, 2... (4.34)

xn+1 =
βxn
A

, n = 0, 1, 2... (4.35)

xn+1 =
βxn
Bxn

, n = 0, 1, 2... (4.36)

xn+1 =
βxn
Cxn−k

, n = 0, 1, 2... (4.37)

Eq.(4.32) and Eq.(4.36) both are trivial, since both of them are constants.

Eq.(4.33) was studied in [14], G.LADAS showed that every solution of
Eq.(4.33) is periodic with period two.
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Eq.(4.34) has nontrivial solution, and every solution is periodic with pe-
riod 2(k + 1). Eq.(4.35) is a linear difference equation.

Finally, Eq.(4.37), which using the change of variables,

xn =
β

C
yn

can be reduced to the difference equation

yn+1 =
yn
yn−k

(4.38)

When k = 1, every solution of Eq.(4.38) is periodic with period 6, and its
solution is:

· · · , x−1, x0,
x0

x−1

,
1

x−1

,
1

x0

,
x−1

x0

, · · ·

.
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Chapter 5
The Matlab 6.5 Code
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5 The Matlab Code 6.5

Birzeit University
Muna Abu Al-Halaweh , (1075342)
Professor: Mohammad Saleh

Matlab code for the fixed point graph
clear all
dt=0.01;
a=1;
b=4;
n=(b-a)/dt;
t=a:dt:b;
for i=1:n+1
y(i) = t(i)2 − 4 ∗ t(i) + 6;
end
plot(t,y,t,t) grid on title(’the equilibrium points for f(x) = x2 − 4x+ 6′).

Matlab code for the cobweb diagram for some µ {Figures A and
B}
clear all
m= input(’insert the value of m=’);
x(1)=input(’give initial value x(0) to find he following iteration=’)
dt=0.01;
a=0;
b=1;
n=(b-a)/dt;
t=a:dt:b;
for i=1:n+1
y(i)= m*t(i)*(1-t(i));
end grid on plot(t,y,t,t)

number=20;
hold on
for i=1:number
x(i+1)= m*x(i)*(1-x(i));
line([x(i) x(i+1)],[ x(i+1) x(i+1)])
line([x(i) x(i)],[ x(i) x(i+1)])
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end
’ n x(n)’
i=1;
[i x(i)]
for i=2:number
if(x(i)==x(i-1))
break
end
[i x(i)]
end

Matlab code for a general solution of the rational difference equa-
tion of order k, this program solves the equation:
Yn+1 = ( p + q*Yn )/( 1+ Yn+r*Yn-k)
function ratdiff;
k=input(’enter the value of the positive integer k = ’);
p=input(’enter the value of the positive parameter p = ’);
q=input(’enter the value of the positive parameter q = ’);
r=input(’enter the value of the positive parameter r = ’);

solution =ddifkk(k,p,q,r);
disp(’ ’)
disp(’ Table ’)
disp(’ ’)
disp(’The solution x(n) is given in the following table : ’)
d=[solution(1:25,:),solution(26:50,:),solution(51:75,:),solution(276:300,:)];
disp(’——————————————————————————-’)
disp(’ n x(n) n x(n) n x(n) n x(n) disp(’————————————————
——————————-’)
disp(d)
fixedpoint=(((q − 1) + sqrt((q − l)2 + 4 ∗ p ∗ (r + 1)))/(2 ∗ (r + 1)));
fprintf(’fixedpoint =function plotandeval=ddifkk(k,p,q,r);

for i=1:k+1;
x(i)=input(’enter the value of the positive initial condition x=’);
end

for n=k+1:300;
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x(n+1)=(p+q*x(n))/(1+x(n)+r*x(n-k));
end

t=1:301;
plotandeval=[t;x]’;
grid on
hold on

t=1:301;
plot(t,x,’b.-’);
xlabel(’n-iteration’);
ylabel(’Y(n)’);
title(’Figure :plot of y(n+1)=(p+q*y(n))/(1+y(n)+r*y(n-k)’);
p1=strcat(’k= ’,num2str(k));
p2=strcat(’p= ’,num2str(p),’, r= ,num2str(r),’, q= ’,num2str(q));
legend(p1,p2);
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