ens.e ol sz
BIRZEIT UNIVERSITY
Birzeit, Falestine

Faculty of Graduate Study

Dynamics of Rational Difference
Equation

a+ B,
A+ Bx, + Cx,_s
Using Mathematical And
Computational Approach

Ln+l1 =

Prepared by
MUNA ABU ALHALAWA

Supervised by
Prof. MOHAMMAD SALEH

M.Sc. Thesis
Birzeit University
Palestine
2009



Dynamics of Rational Difference
Equation

a+ Bz,
A+ Bx,, + Cx,_s
Using Mathematical And
Computational Approach

Lntl =

Prepared by
MUNA ABU ALHALAWA

Supervised by
Prof. MOHAMMAD SALEH

Birzeit University
Palestine
May 2009

This thesis was submitted in partial fulfillment of the requirements
for the master’s degree in Mathematics From the Faculty of Grad-
uate Studies at Birzeit University, Palestine



i

BIRZEIT UNIVERSITY
MATHEMATICS DEPARTMENT

The undersigned hereby certify that they have read and recommend to the
Faculty of Graduate Studies for acceptance a thesis entitled

Dynamics of Rational Difference Equation

a+ B,
A+ Bz, + Cx,_}

Tp1 =
Using Mathematical And Computational Approach
By

MUNA ABU ALHALAWA

in partial fulfillment of the requirements for the degree of Master.
This thesis was defended successfully on May, 2009

Committee Members Signature
1. Prof. Mohammad Saleh Head of Committee ...............
2. Dr. Marwan Alogqeili Internal Examiner  ...............

3. Dr. Tahseen Mughrabi External Examiner ...............



iii

Dedication

Thankfully I dedicate this thesis to all those
who contributed to its success. I dedicate it
to my beloved family: father, mother, brothers
and sisters who through their encouragement,
patience and support enabled me to continue
my study and get this degree.

[ am also very grateful to my school teach-
ers and university teachers and professors who
were like a candle to me and that enlightened
my mind and life.

Particulary I am grateful to Professor
Mohammad Saleh who through his patience,
support and knowledge made this work suc-
cessed.

Many thanks to Dr. Marwan Elogeili for his
support, encouragement and his valuable com-
ments on this thesis.



v

I would like also to express my thanks to
Dr. Tahseen Mughrabi. He was my mentor ever
since I was a freshman. More than just a men-
tor, he became a very good friend.

Finally I dedicate this thesis to all those who
supported me, believed in me. There are too
many important friends, they know who they
are, for without their love and support I would
not have been able to reach this point.

THANK YOU ALL



Abstract

The main goal of this thesis is to investigate the periodic charac-
ter, invariant intervals, oscillation and global stability and other new
results of all positive solutions of the equation

a+ Bz,
A+ Bz, +Cxp_p

Tpi1 = ,n=0,1,2,..

where the parameters o, 3, A, B and C are non-negative real num-
bers with at least one parameter is non zero and the initial conditions
Tk X_fil,---, T—1, o are non-negative real numbers with the solution

is defined and k € {1,2,3,...}.

We give a detailed description of the semi-cycles of solutions, and
determine conditions under which the equilibrium points are globally
asymptotically stable.

In particular, our monograph is a generalization of the rational
difference equation that was investigated in [15].
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Introduction

The dynamical system is the study of phenomena that evolve in space and/
or time by looking at the dynamic behavior or the geometrical and topo-
logical properties of the solution, whether a particular system comes from
Economics, Biology, Physics, Chemistry, or even Social Science. The dy-
namical system is the subject that provides the mathematical tools for it’s
analysis.

Dynamical system in point of view of mathematics is a system whose be-
havior at given time depends, in some sense, on it’s behavior at one or more
previous times.

An equation which express a value of a sequence as a function of the other
terms in the sequence is called a difference equation.

In particular, an equation which expresses the value z,, of a sequence a,, as
a function of the term a,_; is called a first order difference equation. If we
can find a function f such that a, = f(n) , n =1,2,3, ... then we will have
solved the difference equation.

This thesis consists mainly of 5 chapters, where Chapter 1 deals with first
order difference equations. We focus on the equilibrium points and their
stability, the Cobweb Diagram and periodic points. Chapter 2 deals with
difference equations of higher order. We focus on the solution of k** or-
der homogeneous linear difference equations with constant coefficients and
the solution of nonlinear difference equation, equilibrium points of difference
equations, the linearization and the global stability theorems of non linear
difference equations. In Chapter 3 we will study the Dynamics of the equation

a+ Bz,
A+ Bx, + Cx,_;
In Chapter 4 we will mention the special cases of Eq.(0.1) and study some

of them.
Finally chapter 5 presents the Matlab codes of all figures in this thesis.

Tpyl = ,n=0,1,2,.... (0.1)

Eq.(0.1) was studied by G.LADAS in [15], when k£ = 1. He studied the
equilibrium points and the local and global stability of the solution of the
equation.



The aim of this thesis is to study: equilibrium points, local stability
and global stability, periodic solution, semicycles and boundedness of the
solutions of the equation

a+ Bx,
A+ Bx, + Cx,_y
where the parameters «, 3, A, B and C are non-negative real numbers with at

least one parameter is non zero and the initial conditions x_x, x k11, ..., 2_1, Tg
are non-negative real numbers with the solution is defined and k € {1, 2,3, ...}.

Tpi1 = . n=0,1,2,..

We are particulary interested in the asymptotic behavior of the solutions,
that is the behavior of the solution as n — oo.



Chapter 1

Dynamics of First Order Differ-
ence Equations



1 Dynamics of First Order Difference Equa-
tions

1.1 Introduction

Difference equations usually describe the evolution of certain phenomena over
the course of time. In difference equations the term z,; is related to the
term x,, and the relation is expressed in the difference equation

Tpy1 = f(2n) (1.1)

starting from a point zy, we can generate the sequence

o, f (o), f(f (20)), F(f(f(20))), ---

and for convenience we use the notation

FP(wo) = f(f(xo)) = 22
Pxo) = F(f(f(x0))) = 3

fn(x0> = In

where f(zg) is called the first iterate of zo under f, and f?(zo) is called
the second iterate of o under f, and more generally f™(zy) is the n-th iterate
of xy under f.
Thus we can have

ns1 = [ (20) = f(f"(20)) = f(an)

This iterative procedure is an example of a discrete dynamical system.
In particular, we can find out the solution of linear first order difference
equation by forward iteration with initial condition x.
For example, let us consider the simplest case of the linear difference equation

Tp41 = ATp



with the initial condition z(, so we get the solution by forward iteration with
the initial condition zg as follows:

r1T = axy

Ty = ax; = alazy) = a’xg
Tz = A9 = CL3$0

T, = a"To

We can notice that the limiting behavior of the solution of equation
Tp41 = ATy
is as follow:

1. If |a] < 1, then lim z, =0

2. If a > 1, then lim x,, = oo.

n—oo

3. if a < —1, then lim z, does not exist.

n—oo

4. If a = 1, then every point is an equilibrium point.

ro if niseven

D. Ifa:—l,thenajn:{ —wo if misodd

or x, = (—1)"xg

1.2 The Equilibrium Points

Let us consider the difference equation

Definition 1.1. A point 7 is said to be an equilibrium point if it is a fixed
point of the map f of the Eq.(1.2) ; i.e; if f(ZT) =T.
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Example 1.1. Determine the fixed points of the following function
flz) =24z +6
Solution: We can find the fixed points by solving the following equation:

fl@) =
then, we get
?—4dr+6=ux

hence
2 =5 4+6=0

then
(x—2)(x—3)=0

hence, there are two fized points

T=2andxT =3

the equilibrium points furf(x):x2—4x+6

. : ' ; ; )
[ T TS N N {
[T S T R - ]
I T SO NS .V A ]
. I R WO T N G
-l ) e e SOEL. ]
NN S —— .l — i
IS - W4 . . ]
. RN e -
- HEEER T WEN WENNE W — i
9 i 1 i 1 1
1 1.5 2 i 3 3.5 4

1.3 Stability Theorem

One of the main objectives in the theory of dynamical systems is the study of
the behavior of its solution near the equilibrium point, such investigation is
called Stability theory. To do this investigation, we begin by introducing
the basic notions of stability.
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Definition 1.2. Let f : I — [ where [ is an interval in the set of real
numbers R and T be an equilibrium point of the difference equation

then
1.

Tni1 = f(n) (1.3)

The equilibrium point Z of Eq.(1.3) is called locally stable if for every
€, there exists 0 such that if

|ZEO—E| <0
then

|z, — 7| <€
foralln > 1, and all x € 1.

The equilibrium point is called unstable if it is not stable.

The equilibrium point T of Eq.(1.3) is called lacally asymptotically
stable or (asymptotically stable) if it is stable and if there exists v > 0
such that if

’l’o — fl <7
then

lm z, =7

n—oo

. The equilibrium point T of Eq.(1.3) is called global attractor if for

every
To € 1
then
lim z, =7
n—oo

The equilibrium point T of Eq.(1.3) is called globally asymptotically
stable (or globally stable) if it is stable and is global attractor.

The equilibrium point T of Eq.(1.3) is called repeller if there exists
r > 0 such that if o € I and

lzg — | < r
then there exists N > 1 such that

ey — T > r
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Clearly, a repeller is an unstable equilibrium point.

1.4 The Cobweb Diagram

One of the important graphical method for analyzing the stability of equi-
librium points for (x,,x,4+1) is the cobweb diagram, since z,41 = f(z,).
We draw a graph of f, we can choose our initial point x(, then we can
find x; from the graph. This could be done by drawing a vertical line from
the point xg, so that it also intersects the graph of f at (xg,z;). Next
draw a horizontal line from (x, ;) to meet the diagonal line y = z at the
point (z1,z;). Now again a vertical line drawn from (zq,z;) will meet the
graph of f at (z1,x2), continuing this process we can evaluate all the points
in the orbit of xo, namely, the set {xg,z1,xq, - ,2,, -+ } or equivalently

{ZE(), f((lf()), fQ(ZEo), e ’fn(l,())’ e }

Definition 1.3. Let u > 0, then the difference equation
Tpy1 = pn (1 — 2,)

is called discrete Logistic difference equation, and the function
fulz) = pa(l —x)

is called Logistic Map.
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Example 1.2. : Consider the difference equation
Tyt = prn(l —xy)
for p=2 and p= 3.6
1. Find the equilibrium (fixed) points.

2. Determine the stability of the equilibrium points by using Cobweb dia-
gram.

Solution: To find the fized points of f,, we solve the equation
pr(l—z) ==z
. This yields two equilibrium points: 1 = 0, and Ty = "T_l

o When p = 2, then the two equilibrium points are ¥, = 0 and Ty = %
The stability can be achieved from cobweb diagram.

Figure.A. shows the cobweb diagram, from which we can see that the
equilibrium point To is asymptotically stable.

Figure. A.
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o When p = 3.6, then the two equilibrium points are T; = 0 and Ty =
0.7222. The stability can be achieved from cobweb diagram.

Figure.B. shows the cobweb diagram, from which we can see that the
equiltbrium point To is unstable.

Figure.B.
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1.5 Criteria for Stability

In this section, we are going to introduce some powerful criteria for local
stability of equilibrium(fixed) points. Equilibrium points are divided into
two types: hyperbolic and non hyperbolic. A fixed point T of a map f is
said to be hyperbolic if |f'(Z)| # 1. Otherwise it is non hyperbolic.

Theorem 1.4. [11] (Criteria for Stability) Let T be a hyperbolic fized point
of a map f, where f is continuously differentiable at T. The following state-
ments then holds true:

1. If|f'(T)| < 1, then the equilibrium point T of Eq.(1.2) is asymptotically
stable.

2. If |f'(T)| > 1, then the equilibrium point T of FEq.(1.2) is unstable.
Theorem 1.5. [11] Suppose that for an equilibrium point T of Eq.(1.2),
(@) = 1. The following statements then holds true:

1. f"(x) # 0, then the equilibrium point T of Eq.(1.2) is unstable.

2. f"(Z) =0 and f"(Z) > 0, then the equilibrium point T of Eq.(1.2) is
unstable.

3. If f"(Z) =0 and f"(T) < 0, then the equilibrium point T of Eq.(1.2)
15 asymptotically stable.

1.6 Periodic Points

In studying the dynamical system its important to study its periodicity. An
example: the motion of the pendulum is periodic.

Definition 1.6. Let b be in the domain of f. Then:
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1. b is called a periodic point of f in Eq.(1.2) if for some positive integer
k, f¥(b) = b. Hence a point is k-periodic if it is a fixed point of f*.
The periodic orbit of b is

O) = {b, f(b), f2(0), ... fF71(b)}

and it’s often called a k-orbit.

2. b is called eventually k-periodic if for some positive integer m, f™(b) is
a k-periodic point; in other words f™+*(b) = f™(b).

Example 1.3. Consider the difference equation generated by the tent func-
tion

2 fo<z<i
T =42 dh=rss (14)
21-2) if;<xz<1
We can first obtain that the periodic points of period 2 are the fixed points of
T? . It is easy to verify that T? is given by

Ag if0<z<i

T(x) 21 —2z) if:<z<3, (1.5)
4(x — %) zf% §x<%,
41-z) f3<z<1

There are four equilibrium points : 0,0.4, g,cmd 0.8, two of which 0 and

%, are equilibrium points for T'. Hence {0.4 0.8} is the only 2- cycle of T.

Definition 1.7. Let b be a k-periodic point of f. Then b is:

1. Stable if it is a stable fixed point of f*.
2. Asymptotically stable if it is an asymptotically stable fixed point of f*.

3. Unstable if it is an unstable fixed point of f*.
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Chapter 2
Difference Equations of Higher
Order
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2 Linear Difference Equations of Higher Or-
der

2.1 General Theory of Linear Difference Equations

The normal form of k¥ order nonhomogeneous linear difference equation is
given by:

Tpik + P1(N)Tpgr—1 + P2(N)Tpip—o + - + pr(n)z, = g(n) (2.1)

where p;(n) and g(n) are real valued functions defined for n > ny and
pr(n) £ 0. If g(n) =0, then the Eq.(2.1) is said to be a homogeneous equa-
tion. Now the equation:

Tpik + P1Tnak—1 + P2Tnsko+ -+ prtyn =0 (2.2)

is called linear difference equation of k* order with constant coefficients.

The sequence x,, is said to be a solution of Eq.(2.1) if it satisfies the
equation. If we specify our initial conditions of the equation, this lead us to
the initial value problem

Tnik + P Tnsk—1 + P2(1)Tnik2 + - + pp(n)zn = g(n) (2.3)

xno = CLU? $n0+1 = ax

Tngtk—1 = Ag—1 (2.4)

where a;’s are real numbers.

Example 2.1. Consider the 2nd order homogeneous difference equation
Tpyo = 4,1 + 52y (2.5)
where xo = 1, x1 = 2, then we can find xo, x3:

ro = 4dx1+ drg=13
r3 = 4x9+ dxry = 62
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and by the same method, we can get x4, x5, - - .
So if we have the initial conditions, then we can find the whole solution of
our difference equation.

Theorem 2.1. [11] The initial value problems of Eq.(2.3) and Eq.(2.4) have
a unique solution x,,.

Definition 2.2. The functions fi(n),f2(n),---,f.(n) are said to be linearly
dependent for nyg < n if there are nonzero constants ay,as,- - - ,a, such that

alfl(n) + Clgfg(n) + -+ (lrfr(n> =0

The negation of linear dependence is linear independence. Then the set of
functions fi(n),fa(n), - -, f.(n) are said to be linearly independent if whenever

a1 fi(n) +azfa(n) +---+a,fr(n) =0

for all ng < n, then we must have a; = ay =--- =a, = 0.

Definition 2.3. A set of k linearly independent solution of Eq.(2.2) is called
a fundamental set of solutions.

Theorem 2.4. (The Fundamental Theorem) [11] If py, # 0 is non zero for
all k, then Eq.(2.2) has a fundamental set of solutions.

Theorem 2.5. (Superposition Principle) [11] If x1(n),z2(n), - ,x.(n) are
solutions of Fq.(2.2), then also
z(n) = ayx1(n) + agza(n) + - - - + a,x,.(n)

is a solution of Eq.(2.2), where ay,as, - ,a, are real numbers.
Example 2.2. Consider the third order homogeneous difference equation

Tn43 — 3xn+2 + 3xn+1 —x,=0

Where the functions 1, n, n? form the fundamental set of solutions of the
equation.
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We can verify that the fundamental set forms a solution of the equation by
substituting x, = 1, x, = n, x, = n? into the equation.

From superposition principle we can say that

T, = C1 + Ccon + 03n2

where cq,c9,c3 are real numbers, is also a solution of the equation, which
can be done easily.

In the remaining of this section we will give all possible solutions of
Eq.(2.2). The solutions of Eq.(2.1) have been investigated in [11].

2.2 Solution of k' order homogeneous linear difference
equation with constant coefficients

Now, consider the k' order homogeneous linear difference equation (2.2)
where the p;’s are constants and p; # 0. Define A to be a characteristic root
of Eq.(2.2), then A" is a solution of Eq.(2.2). Substitute A" into Eq.(2.2), we

obtain:
R (2.6)

which is called the characteristic equation of Eq.(2.2)

The general solution of Eq.(2.2) has different forms depending on \’s.

1. Distinct roots
Suppose that the characteristic roots i, Ao, - -+ , Ay are distinct.i.e.

(M| # [Xa] # - [\
So the general solution is:
Ty = LA + oAy + -+ + R\
2. Repeated Roots

)\1:>\2:"':)\m7 2§m§k‘



Then the general solution of difference equation( 2.2) is given by:

Ty = CIA] + con Ay + -+ - + cmnm_l)\fn + Cng1 A T A

3. The absolute value of the roots are equal
i.e.

Al = [Aaf = -+ = Ak

e The characteristic roots are equal
the general solution is:

k-1
Ty, = CIA] +canAy + -+ ogn” Ay

e The characteristic roots are not equal

AM=Xd=-=X, =X
and
A1 = Az = - = A = —A
The general solution is given by:
Tp = (c1 +con+c3n?+ -+ + cpn™ AT +
(Cmt1 + Cmgan + Cmgan® + - + g™ (=) A"

4. Some of roots are complex
Assume that

)\1 =a+ Zﬁ
and
/\2 = — ’Lﬁ
and that Az, A4, -+, A\x are all real and distinct such that
[As[ > [Ag] >+ > [y
where
)\1 =o+ Zﬁ
= re'

=r(cos ¢ +1i sin @)

21
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and

)\2 = 0 — Zﬁ
=re

=r(cos ¢ —1i sin @)
Then the general solution of Eq.(2.2) is given by:

Ty = e 4 epre” 0 4+ c3Ag + -+ AL
= 17" (cos ng + i sin ng) + cor’(cos ng — i sin ne) + cz\y + -+ + KA}
= (¢1 4+ co)r" cos ng + (1 — c2)r™i sin ng + 3Ny + -+ + EAL
=7"[(c1 + c2) cos no + (c1 — c2)i sin n@| + czA\y + -+ + cEAp
= r"[a; cos NP+ ay sin n@| + cg\y + -+ + A}

where a1 = ¢; + ¢ and ag = (¢; — ¢9)i. Now, Let

3] . a2 a2
COS W=———, 81N W= ——, W= arctan(—)

2 2’ 2 2’
v ai+a; Vv ai + a3 ax

The solution will be

\/ a3 + a3fcos w cos ng +sin w sin n@| + Ay + - - -+ AL

Tp,=1"1/a
=7r"\/a? + a3cos (g —w) 4+ c3\5 + -+ + A}
= Ar"cos (ng —w) + cg\y + - - + Ay

where

A= /a2 +a3, r=+/a?+ (% ¢= arctan(g)
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2.3 Solution of k" order nonhomogeneous linear dif-
ference equations with constant coefficients

The main idea of solving such difference equations is to find particular so-
lution in addition to homogeneous solution, and there are some techniques
discussed in this manner in [2].
Example 2.3. Find the general solution of

Tpio — DTpyy + 61, = 4"n?

Solution:
Let xg, x1 be two initial conditions. Then

Tp = Thn + Tpn

where x,, s the general solution, xn, 1s the homogeneous solution, and x,,
18 the particular solution.
To find the homogeneous solution: solve the characteristic equation:

2 —5r+6=0
P —5r+6=(r—2)(r—3)=0
T = 2, To = 3
Then, the homogeneous solution is:

Thn = ary + bry
=a2" + b3"

To find the particular solution, let

z, = cA" + dnd™ + en*4"

substituting this potential solution into the equation and equating coeffi-
cients as following

Tpn = c4" 4+ dnd" + en?4"
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Tpni1 = A"+ d(n 4+ 1)4" T + e(n + 1)%4"

Tpnio = A" + d(n + 2)4"2 + e(n + 2)24" 12

Hence, we get

A" 24 d(n+2)4" 2 -e(n+2)24" 2 —5(c4" M +d(n+1)4" e(n41)24" 1)+
+6(c4™ + dnd™ + en?4™)
= 4"p?

after some simple algebraic calculations, we get

:>6c:1:>c:%

= 2d=0=d=°

— _ 244
:>d—e—O:>e—108

Thus, the general solution of the equation is:

244 10 1
, = on h3™ ZITAn g - 2471,
Tp = a2" + + 103 o " + g

To find the values of the constants a and b the initial conditions xg, 1,
must be provided.
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2.4 Limiting Behavior of Solutions

To simplify our exposition we restrict our discussion to the second order
difference equation

Tn+2 +p1xn+1 + P2y = 0 (27>

Suppose that A\; and Ay are the characteristic roots of the equation. Then
we have the following three cases:

Case 1: A\ and A, are distinct roots. Then z1(n) = A} and z5(n) = Ay
are two linearly independent solutions of Eq.(2.7) and the general solution is
given by :

n n

Example 2.4. Consider the equation
Tn42 = 3xn+1 — 2z,
then the characteristic equation is:

A —3)0+2=0

The solutions to the quadratic equation are

A=1, A=2

and the general solution s

T, = a1 + ax2"

Now assume that

A1 > Az

then A; is called the dominant root and z;(n) the dominant solution.
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The general solution could be written as

Ty = /\1 (a1 + CLQ()\—)H>
1
It is clear that lim z, = lim a; A} since % <1, then lim 22 = 0.
n—00 n—00 1 n—oo 1

We can notice that:

1. If |[A1] > 1, then the solution z,, will diverge.

2. If Ay =1, then the solution x,, will be a constant solution.

3. If Ay = —1, then the solution z, will be oscillating between two values
a; and —ay.

4. If [\| < 1, then the solution z,, will converges to zero.

Case 2: A\; = Ay = A\, then the general solution is given by
T = A"(a1 + agn)
Example 2.5. Consider the equation

Tpto + 42,401 +4=0

then the characteristic equation is

AN 44Ar+4=0

the solution to the quadratic equation is

A=-2

and the general solution is
T, = a1(—2)" 4+ agn(—2)"

It is obvious that lim x,, = lim A\"(ay + agn), then

n—oo n—oo
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1. If |A| < 1, then the solution will converge to zero since lim n\" =0

n—oo

2. If |\| > 1, then the solution will diverge.

Case 3: \; and \; are Complex roots; i.e; \y = a+ 0 and Ay = a — 13,
where (3 # 0. Then the general solution will be

zy, = ar(a+16)" + ax(a — ifB)"

In polar coordinates the complex number o + i could be written as
x, = re'® where

r=\a?+ B a=rcosp, B=rsing, ¢= arctan<§>

then

xp = ay(rcos ¢+ irsin )" + as(r cos ¢ — isin @)"

so after arrangement we get

T, = 1r"(c1 cos(ng) + o sin(ng))

where ¢; = a; + a9 and ¢o = a1 — as.

Let

1 . C2 Co
COS W=—7—, SIN W= ——, W= arctan(—)

2 2’ 2 2’
Vet e Vel t e €1
then we can write the solution as
x, = Cr" cos(ng — w)

where C' = \/c? + 3.

The solution x,, is oscillating since the cosine function oscillates. But this
oscillation have three different cases:

1. If r < 1, then \; and \y = )\; lie inside the unitary disk and the solu-
tion will converge to zero.
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2. If r =1, then \; and Ay = \; lie on the unitary disk and the solution
oscillate in constant magnitude.

3. If r > 1, then Ay and )\ = \; lie outside the unitary disk and the
solution will diverge.

Example 2.6. Consider the equation
Tpyo — 2Tpy1 + 22, =0
the characteristic equation is

N —2X+2=0

then
)\1:1+26L7’Ld)\2:].—7,

where r = /2 and ¢ = arctan(1).

The real formed solution is

n

xn, = 22 (cq cos(ng) + cosin(ng))
Then since r = /2 > 1, then A\ and Ay = \; lie outside the unitary disk

and the solution will diverge.

Theorem 2.6. [11] The following statements hold:

1. All solutions of Eq.(2.7) oscillate about zero if and only if the charac-
teristic equation has no positive real roots.

2. All solutions of Eq.(2.7) converge to zero if and only if
max{| [, [ A2} <1

Consider the second order non homogeneous difference equation

Tpt2 + P1Tpg1 + P2z, = M (2.8)
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where M is nonzero. Suppose that T is an equilibrium point of such equation,
then
T+ 1T + poT = M

solving for T we get

M
14+p1+p2
But the general equation of the nonhomogeneous equation is

T =

Tp = Thn + Tpn

Where x,, is the solution of the homogeneous equation, and z,, is the par-
ticular solution. For this equation we take z,, = 7.

Theorem 2.7. [11] The following statements holds:

1. All solutions of Eq.(2.8) oscillate about T if and only if the character-
istic homogeneous equation of Eq.(2.7) has no positive real roots.

2. All solutions of Eq.(2.8) converges to T if and only if max{|\], ||} <
1 where \y and Ay are the real roots of the homogeneous characteristic
equation of Eq.(2.7).

Higher Order Scalar Difference Equations

2.5 Definitions

Here, we list some definitions which will be useful in our investigation.

Definition 2.8. Let I be some interval of real numbers and let
Jilpn — 1

be a continuously differentiable function. Then for every set of initial condi-
tions x_y, - x_1, 9 € I, the difference equation

Tp+1 :f(xnaxn—lv"' 7xn—k)> n:0,1,--- (29)

has a unique solution {z,}>° ,.



30

Definition 2.9. A point T is called an equilibrium point of Eq.(2.9) if
T:f(fafv 75)

that is
T, =7, forn>0

is a solution of Eq.(2.9), or equivalently, T is a fixed point of f.

Definition 2.10. Let T be an equilibrium point of Eq.(2.9)

1. The equilibrium point 7 of Eq.(2.9) is called stable if for every ¢, there
exists o such that if
T fy o T_1,T0 €1

and
Top—T|+ T g1 — T+ + |wg—T| <9
then
|z, —T| <€
for all n > —k

2. The equilibrium point T of Eq.(2.9) is called lacally asymptotically
stable if is it stable and if there exists v > 0 such that if

Tfy s T-1,%0 € I
and
l',k—T|+|lLk+1—§|+"'+|x0—f| <7
then
lim z, =7
n—oo

3. The equilibrium point T of Eq.(2.9) is called global attractor if for
every
Tofy s T-1,%0 € I

we have

lim z, =%
n—oo
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4. The equilibrium point T of Eq.(2.9) is called global asymptotically
stable if it is stable and global attractor.

5. The equilibrium point T of Eq.(2.9) is called unstable if it is not stable

6. The equilibrium point Z of Eq.(2.9) is called repeller if there exists
r > 0such that if x_g,--- ,x_1, 20 € I and

lz_)p —Z| + |xpp1 — T+ -+ o —T| <7
then there exists N > —k such that
ey — T > r

Clearly, a repeller is an unstable equilibrium.

Definition 2.11. Let a = %(E, Z) and b = %(T,E) where f(x,y) is the

function in Eq.(2.9) and 7 is the equilibrium of Eq.(2.9). Then the equation
Zni1 = GZp +bzp_p, n=0,1,2,--- (2.10)

is called linearized equation associated with Eq.(2.9) about the equilib-
rium point 7, and its characteristic equation is

Mg\ — b =0. (2.11)
Theorem 2.12. [17/:(Linearized Stability)

1. If all the roots of Eq.(2.11) lie in open disk |\| < 1, then the equilibrium
point T of FEq.(2.9) is asymptotically stable.

2. If at least one root of Fq.(2.11) has absolute value greater than 1, then
the equilibrium T of Eq.(2.9) is unstable.

Theorem 2.13. [13] Assume that p,q € R and k € {1,2,3,---}. Then a
necessary and sufficient condition for asymptotic stability of the equation

xn—i—l_pxn_q‘rn—lzou n:0)1727"'

18 that
lpl<1-g<2
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Theorem 2.14. [5]/ Assume a,b € R and k € {1,2,---}. Then
la| +|b] < 1 (2.12)
1s sufficient condition for asymptotic stability of the difference equation
Tpy1 — @y +bxy =0, n=0,1,2,--- (2.13)
Suppose in addition that one of the following two cases holds:
1. kis odd and b < 0 .
2. k is even and ab < 0.

Then Eq.(2.12) is a necessary condition for asymptotic stability of Eq.(2.13).

Theorem 2.15. [16] The difference equation

Yni1 — bYn + 0y =0, n=0,1,2, ...

is asymptotically stable if and only if 0 < |b| < %Cos(kk—;)

Theorem 2.16. [1/] Let I = [a,b] be an interval of real numbers and assume
f:a,b] x [a,b] — |a,b
s continuous function satisfying the following properties:

1. f(z,y) is nondecreasing in x for each y € [a,b] and f(x,y) is nonin-
creasing in y for each x € [a,b].

2. If (m, M) € [a,b] x [a,b] is a solution of the system

then m = M.
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Then Eq.(2.9) has a unique equilibrium T € [a,b] and every solution of
FEq.(2.9) converges to T.

Proof. Set
mg =a and My =05

foreach 1 =1,2,3,---
m; = f(mifla Miq) and M; = f(MFhmiq)
then
my = f(mo, Mo) > a =mg and My = f(My, mo) < b= M,
and
mo = f(mq, My) > f
My = f(My,mq) < f(Mo, mg) = My < M,y

(mao, My) = my > my

by induction, we have

mo <my--omy < - < My <o < My < M,

also
Tnr1 = [(Tn, Tnok) < f(Mo,mo) = M
Tpg1 = f(Tny Tnek) > f(mo, M) = my
and
Tp4+1 = f(xnyxn—k> S f(M17 ml) - M2
Tpt+1 = f(xnamn—k) Z f(m17 Ml) = M2

by induction, we have
m; <x, < M;, n>(G—1)k+i

set
m = lim m; and M = lim M;

1—00 1—00
then we have
m < lim inf z; < lim supz; < M

1—00 1—00
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by continuity of f
m = f(m,M) and M = f(M,m)

therefore in view of (2)
m=M=72

O
Theorem 2.17. [1}] Let I = [a,b] be an interval of real numbers and assume
f:la,b] x [a,b] — |a, b
15 continuous function satisfying the following properties:
1. f(z,y) is non increasing in each of its arguments;

2. If (m, M) € [a,b] x [a,b] is a solution of the system

then m = M.

Then Eq.(2.9) has a unique equilibrium T € [a,b] and every solution of
Eq.(2.9) converges to .

Proof. Set
mg =a and My =05

for each i =1,2,3,---. Set
M; = f(mi—1,mi—1) and m; = f(M;_1, M;_)
Then
my = f(Mo, My) > a = myg, and My = f(mg, mg) < b= M

and

me = f(My, My) > f(My, My) =my > my
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By induction, we have
mo<mp <---<m; <---<M<--- <M <M,
Also
Tpi1 = [(Zns Tnek) < fmo, mo) = My
Tpt+1 = f(xnaxn—k) Z f(M07 MO) =m

and
Tpt1 = f(xnaxn—k) S f(m17m1) - M2

Tpir = f(@n, Tner) > f(My, M) = ma

By induction, we have
m; <z, < Mg, forn>(i—1)k+1

Set
m = lim m; and M = lim M,

1—00 1—00
then clearly
M > limsupx; > liminf x; > m

1—00 1— 00

and by the continuity of f,
m = f(M, M) and M = f(m,m)

therefore in view of (2)
m=M=7

]

Theorem 2.18. [14] consider the difference Eq.(2.9). Let I = |a,b] be some
interval of real numbers and assume that

f:la,b] x [a,b] — [a, ]
18 continuous function satisfying the following properties:

1. f(x,y) is non increasing in x for each y € [a,b], and f(x,y) is non
increasing in y for each x € |a,b.
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2. If (m, M) € [a,b] X [a,b] is a solution of the system

then m = M.
3. The equation f(x,y) = = has a unique positive solution.

Then Eq.(2.9)has a unique positive solution and every positive solution of
Eq.(2.9) converges to 7.

Proof. set mg=a and My =5b. fort=1,2,3,---
m; = f(M;_1, Mi_1) and M; = f(m;_1,m;_1)
Then
my = f(My, My) > a =myg, and M; = f(mg,mg) < b= M,

and
mz = f<M17M1) > f(MO;MO) =1my > my
M2 = f(m17m1) < f<m07m0> = M1 < MO

By induction, we have

mog<m; <o <my < S M < <M < M
Also
Tpy1 = f(@n, Top) < flmo,mo) = My
Tpy1 = f(@n, xneg) > fF(Mo, My) = my
and

Tni1 = f(@n, Tnog) < f(ma,my) = My
Tnt1 = [(Tn, Tnog) = [(My, My) = my

By induction, we have

m; <x, < M;, n>(G—1)k+i
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set
m = lim m; and M = lim M;

1—00 1—00
then we have
m < lim inf z; < lim supz; < M

1—00 1—00

By continuity of f
m= f(M,M) and M = f(m,m)

by assumption (2)
m=M=7T

]

Theorem 2.19. [14] Assume that f € C [(0,00) % (0,00), (0,00)] and that
f(z,y) is decreasing in both arguments. Let T be a positive equilibrium of
equation Eq.(2.9), then every oscillatory solution of Eq.(2.9) has semicycle
of length at most k + 1.

Proof. When k = 1, the proof is presented as theorem 1.7.2 in [1]. We just
give the proof of the theorem for £ = 2. The other cases for £ > 3 are similar
and can be omitted. Assume that {z,} is an oscillatory solution with three
consecutive terms xxy_1, N, Ty i a positive semicycle

IN-1 2T, IN 2T, INp1 =T

with at least one of the inequalities being strict. The proof in the case of
negative semicycle is similar and is omitted.
Then by using the decreasing character of f. We obtain

Tny2 = flani, onv) < f(7,2) =7

which completes the proof.
For k = 3, assume that {z,} is an oscillatory solution with four consecu-
tive terms rny_1, TN, Tni1, Tyro ID & negative semicycle

IN-1 ST, 2y ST, Tyy1 ST, Iy2 ST
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with at least one of the inequalities being strict. The proof in the case of
positive semicycle is similar and is omitted. Then by using the decreasing
character of f. We obtain

tny3 = foni2, 2nv1) > f(7,2) =7

which completes the proof.

[]

Theorem 2.20. [14] Assume that f € C [(0,00) x (0,00), (0,00)] is such
that f(z,y) is increasing in x for each fized y.and f(x,y) is decreasing in
y for each fived x. Let T be a positive equilibrium of equation Eq.(2.9) then

every oscillatory solution of equation (2.9) has semicycle of length at least
kE+ 1.

Proof. When k = 1, the proof is presented as theorem1.7.4 in [14]. We just
give the proof of the theorem for & = 2.the other cases for k£ > 3 are similar
and can be omitted.

Assume that {z,} is an oscillatory solution with three consecutive terms

IN-1, TN, TN+1

such that
IN-1 < T <TN41

or
IN—1>T > TNt

we will assume that
TN-1 <T <INyl

the other case is similar and will be omitted. Then by using decreasing
character of f we obtain

tny2 = f(eny1,on-1) > f(T,7T)
Now, if zy > T then the result follows. Otherwise xny < T. Hence
tnts = [(@ny2,2n) > f(T,2) =7

which shows that it has at least three terms in the positive semicycle
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Theorem 2.21. [14] Consider the difference equation

Tt = fo(Tn, Tn_1)xn + f1(Tn, Tn_1)Tp_1, n=0,1,2,--- (2.14)
with nonnegative initial conditions and
fo, fi € C[[0,00) x [0,00), 0, 1)]
. Assume that the following hypothesis hold:

1. fo and fy are non increasing in each of their arguments;
2. folx,x) >0 for all z > 0;

3. f0(~17,y) + fl(x7y> <1 fO’/’ all T,y € (07 OO)
Then the zero equilibrium of Eq.(2.14) is globally asymptotically stable.

Theorem 2.22. [1/] Assume that

1. f € C[(0,00) x (0,00),(0,00)];
2. f(z,y) is non increasing in x and decreasing in y;
3. xf(x,x) is increasing in ;

4. The equation

Tpt+1 = Inf<xnaxn—1)a n = 07 1727 T

has a unique positive equilibrium .
Then T is globally asymptotically stable.
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Chapter 3

a+PBxy
A+Bxn+Cx,_y

Dynamics of z,, .1 =
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a+0xy
A+Bap+Cxy_j

3 Dynamics of z,,,; =
In this chapter we present the main part of this thesis, that is studying and

investigating the difference equation

B o+ P,
A+ Bz, + Cxyy,

Tna1 ,n=0,1,2,.. (3.1)
where the parameters «, 3, A, B and C' are non-negative real numbers with at
least one parameter is non zero and the initial conditions x_x, x k11, ...,2_1, Tg
are non-negative real numbers with the solution is defined and k € {1, 2,3, ...}.

Our concentration is on invariant intervals, periodic character, the char-
acter of semicycles and global asymptotic stability of all positive solutions of
Eq.(3.1).

It is worth mentioning that the results in [15] are special case of our main
results. Where the global stability of Eq.(3.1) for £ = 1 has been investi-
gated in it. They showed that in respect to variation of the parameters, the
positive equilibrium point is globally asymptotically stable or every solution
lies eventually in an invariant interval.

Dehghan in [5] investigated the global stability, invariant intervals, the
character of semi-cycles, and boundedness of the equation

Tn +P

—nTE n=0,1,2,..
an—i_qxnfk

Tn41 =

where the parameters p and ¢ and the initial conditions x_x, x_x11,...,2_1, Xg
are positive real numbers, k € {1,2,3,...}.

3.1 Change of variables
Theorem 3.1. The change of variable

A
B

Ty = Yn



reduces Eq.(3.1) to the difference equation

Yot = 5 +];:f?ff;n_k’n —0,1,2,3, ...
where
aB I} C
P= 1T B
with
p,q,r € (0,00)
and
Yks Y—kt1s " Y1590 € (0,00)
Proof. Let
A
Tn = Eyn
then
A
Tpt1 = EynJrl
and
A
Tp—k = Eyn—k
Substitute in the Eq.(3.1), we get
A a+ ﬁ%yn

Eyn—I—l = A+B%yn +C%yn_k

by pulling a common factor %,

A (s sw)
BT T A(B+ By, + C yur)

hence

4 (3 + Oyn)
B (1 + Yn + % yn—k)

Yn+1 =

42

(3.2)
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then 5 5
1 T G
1 + Yn + % Yn—k

Yn+1 =

Now let
aB 15} g
B

b= F#] = Zﬂ"
reduces Eq.(3.1) to

P+ qyn
1+ Yn + TYn—k

Yn+1 =
Thus, the proof has been completed. O

Definition 3.2. Let I be some interval of real numbers and let

Jilgn — 1
be a continuously differentiable function. Then for every set of initial condi-
tions x_y, - x_1,x9 € I, the difference equation
Tp+1 :f(xnaxn—17"'7$n—k)7 n:0717"' (3?))

has a unique solution {z,}>° ,.

Definition 3.3. The solution {y,}>> , of the difference equation y,.; =
FWns Yn—1," -+ ,Yn—k) is periodic if there exists a positive integer p such that
Yn+p = Yn- The smallest such integer p is called the prime period of the
solution of the difference equation.

Definition 3.4. The equilibrium point 7 of the equation

Yn+1 = f(ynayn—h t 7yn—k)7n - 07 17 e

is the point that satisfies the condition

y:f<y7y7

)
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3.2 Equilibrium Points

In this section we find the unique positive equilibrium point of the nonlinear
difference equation

D+ qyn
1+ Yn + Tyn—k7

Yn+1 = - 07 1a e (34)

where the parameters p, ¢, r and the initial conditions y_x, y_x+1,- -+ ,¥—1, Yo
are positive real numbers, and k € {1,2,---}.

To find the equilibrium point, we solve the following equation

7= p+qy
14+y+1ry
hence

y(1+y+ry)=p+qy

by rearranging the terms, we get:

(1417 +(1-9)7-p=0

Solving this quadratic equation, we get the equilibrium points

=) E Vg1 +4p(r+ 1)
v= 2(r + 1)

The only positive solution is:

(= 1)+ /(g —1)2+4p(r + 1)
2(r+1)

y:

3.3 Linearized equation

Let f(z,y) have a continuous partial derivatives in an open region R con-
taining a point P(a,b) where f, = f, = 0. Let h and k be increments small
enough to put the point S(a + h,b+ k) and the line segment joining it to P
inside R. We parametrize the segment PS as

r=a+th, y=b+tk, 0<t <1
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If F(t) = f(a+th,b+ tk), the Chain Rule gives

, dz d
F'(t) = for + fy ot = hfa+ k.

Since f, and f, are differentiable, F" is a differentiable function of ¢ and

,,_8F’%+8F’@

C Ox dt - Oy dt
—Q(hf +kf)h+g(hf +kf,).k
Code " v dy " v

= W2 fon 4 20k fuy + K2 fyy.
Since F and F” are continuous on [0, 1] and F” is differentiable on (0, 1), we
can apply Taylor’s formula with n = 2 and a = 0 to obtain
(1-0)
2

F(1) = F(0) + F'(0)(1 — 0) + F"(c)

mm:me4wm+%F@) (3.5)

for some ¢ between 0 and 1. writing Eq.(3.5) in terms of f gives

f<a+h7 b+k) = f(CL, b)+hfx(a7 b)+kfy(a7 b)—i_%(h2fxx+2hkfxy+k2fyy)‘(a—&-ch,b—&-ck)

(3.6)
Now substitute  and 7 for @ and b, and z—7 and y—=x for h and k respectively
in Eq.(3.6), and rearrange the result as

f(@,y) = f(T,7)+fo(T,7T)(2—7)+ £, (7, f)(y—f)%((fv—f)Qfm?(fv—f) (Y=7) fay++(y=7)* f)
(3.7)

where
f@.2)+ f:(z,7)(z — 7) + f,(Z,7)(y — 7)

is called the Linearization term L(z,y) , and

1 _ _ _ _
(& =2 for + 20 =)y = T) fay + (Y = T)* fiy)l ez et-2)

is the error term E(x,y).
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In studying the behavior of the local stability of Eq.(3.7), its enough to
study the homogeneous part

f(x,y) = fa:(f7 f)x + fy(f’ E)y (38)

Which is called the scalar form.
In matrix form Z = AX, where A = ( fa 0 ) and

U fy
y

Now let v = 2, y = xy_, and z,,1 = f(x,y) then Eq.(3.8) becomes

Tp+1 = f(xny mn—k) - f$<f7 f)l‘n + fy(f7 f)‘rn—k-
To find the linearized equation of our problem, consider

P +qzx

ey =1y

then

of _ql+z+ry) — (p+qz)

or (1+z+ry)?
_qtx+qry—p—qr

B (1+z+ry)?

q—p+aqry

(1+z+ry)?

which implies that

o g,g) = L LEAT
ox (1+7y+17)?
q—p+qry

(1471 47))2

similarly
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g:O(l—l—x—l—ry)—r(p%—qx)

dy (1+z+ry)?
—r(p +qx)
(1424 ry)?
thus
ﬁ(— —) _ —T(p + qg)
oy’ (14 (1+7)y)?

so the linearized equation which is associated to Eq.(3.4) about the equi-
librium point 7 is :

 q—p+qry r(p + q7)
Zn+1 = — Zn — — 5 *n—k
(1+7(1+4r))? (14 (1+7)y)?

1.e
T e ek LI r(p + qy)
A4+ A+ (1 +1)y)

and its characteristic equation is:

2k =0 (3.9)

—p+qry r0+4Y) -
a4 D " Ak = 3.10
g +n)2 0+ 1 +ry)? (3.10)

which implies

kel 4P HATY g rip+aqy)
4 (1+7y(1+7))2 O+ (ltrg? 0 (3.11)
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3.4 The Local Stability

The following two lemmas are important for the study of local stability.

Lemma 3.5. [11] [13] Assume that a,b € R and k € {1,2,3,---}. Then a
necessary and sufficient condition for asymptotic stability of the equation

Tpi1 +az, +br,p=0n=0,1,2,---

s that
la| <1+b<2

Lemma 3.6. [1/] [11] Assume that all the roots of the characteristic equa-
tion of the above equation lie inside the unit circle, then the positive equilib-
rium point is locally asymptotically stable.

Theorem 3.7. The unique positive equilibrium point of Eq.(3.4) is locally
asymptotically stable for all values of the parameters p, q, and r provided that
all roots of Eq.(3.11) lie inside the unit circle.
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3.5 Boundedness of Solutions

Theorem 3.8. Every solution of Eq.(5.4) is bounded from above and from
below by a positive constant.

Proof. Let {y,}°°_, be a solution of Eq.(3.4), so clearly if the solution is
bounded from above by a constant M, then

p
> -

and so its bounded from below.
Now assume for the sake of contradiction that the solution is not bounded
from above, then there exists a subsequence {y,, +1}5_, such that

lim y,, = oo, lim y,, +1 = oo and ¥y, 11 = max{y, : n < n,} for
m—0o0 m—00

m > 0.

so for Eq.(3.4), we see that

Ynt1 < D+ qYn, for n >0

and so
lim y,, = lim y, 1 =00

m—00 m—00

hence, for sufficiently large m

<0

0< Ynm+1 — Yn,, =

which is a contradiction.
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3.6 Invariant Interval

Definition 3.9. Invariant Interval of the difference equation Eq.(3.3) is an
interval with the property that if k 4+ 1 consecutive terms of the solution fall
in I then all subsequent terms of the solution also belong to I. In other
words, [ is an invariant interval for Eq.(3.3) if yy_g4+1,- - ,yn_1,yn € I for
some N > 0, then y, € I for every n > N.

Theorem 3.10. Let {y,}>° , be a solution of Eq.(3.4). Then the following
statements are true:

1. Suppose p < q and assume that for some N > 0,

0= 1+,
2

then y, € |0, =y (q71)2+4p] for alln > N.

2

YUN—k» YN—k+1, YN € [0,

2. Suppose q < p < q(rq+ 1) and assume that for some N > 0,
pP—q
YN—ks YN—k+1, YN € [——, ]
qr

then y, € [p;,q,q] for alln > N.

3. Suppose p > q(rq+ 1) and assume that for some N >0,
qr

YN—k, YN—k+1s YN € [q,

then y,, € [q, 4’%] for allm > N.

Proof. 1. Set
p+ax (¢—D++(@-1)P2+4p
— db—=

9lw) =5 an 2
and observe that ¢ is an increasing function and ¢(b) = b, using
Eq.(3.4), we see that when yy_g, Yn_k+1, - ,yn € [0, ], then

+ +
YNl = P T qyn < PT4yn _ glyn) <b

l+yv+ryv—r — 1+yn
The proof follows by induction.
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2. Take the function

. p+qx
fy) = 1+z+ry

its clear that this function is increasing in z for y > 22, Using Eq.(3.4),
qr

we see that if yn_k, Yn—kt1, -+ un € [F1, 4],
then
g = I gy < fla ) =
T Tt yn +ryv—s T g

and by using the condition p < ¢(rq + 1), we obtain

P+ qun pP—q qlpr+p—q p—yq
= flyn,yn—i) = f(——.,q) = ( ) > :

YN+1 =
T by vk qr (r)*+rq+p—q  qr

and the proof follows by induction.

3. Take the function
' 1+z+ Ty

its clear that this function is decreasing in z for y < 1%. Using
Eq.(3.4), we see that for yy_x, yn—k1, -+, yn € [q, 27,
then

D+ qyn P—q p—gq
= _ > , =
E—— flyn,yn—k) > f( p= e )=4q

and by using the condition p > ¢(rq + 1), we obtain

YN+1 =

P+ qyn

p+q° P4
IT+yn +rynv—i

1+ (r+1)q qr

= flyn.yn—k) < fg,q) =

YN+1 =

The proof follows by induction.
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3.7 Existence of Two cycles

Definition 3.11. Let {y,}°° _, be a solution of Eq.(3.4). We say that the
solution has a prime period two if the solution eventually takes the form:

a¢7¢a¢7wa¢vwa”'

where ¢, 1 are distinct and positive.

Theorem 3.12. Ifk is even, then Eq.(3.4) has no nonnegative distinct prime
period two solution.

Proof. Let k even, assume for the sake of contradiction that there is distinct
nonnegative real numbers ¢, v such that

a¢7¢7¢7w7¢7¢7”'
is prime period two solution of Eq.(3.4), then ¢, satisfy :
p— Pt 99
l+¢+ro
and
o= LT qy
L+ +ry

then by substituting ¢ into the equation of 1, we get easily by a simple cal-
culation that

I+r+q*+ Q=) —(p+qp) =0

solving this quadratic equation for v, we get

(-1 /(@ -1 +4(p+qp)(1+7r+q)
21+7r+q)

Y=

but

V(E=12+4p+ap)1+r+q) > (¢>—1)
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and 1 is nonnegative, then

(- + (@ —-1D)2+4p+qp)(L+ 7 +q)
N 2(1+7+q)

(8

Now again the same steps for ¢, substituting ¢ into ¢, we get that

(= 1)+ /(> =12 +4(p+qp)(1 +7 +q)

¢= 2(1+7+q)

which implies
Y=0¢
which contradicts the hypothesis that 1) and ¢ are distinct nonnegative real

numbers.

[]

Theorem 3.13. Ifk is odd, then Eq.(3.4), has no nonnegative distinct prime
period two solution.

Proof. Let k be odd, and assume that for the sake of contradiction that there
is distinct nonnegative real numbers ¢ and 1) such that

a¢,¢,¢a¢,¢,l/],”'

is prime period two solution of Eq.(3.4), then ¢, ¢ satisfy :

b= pray
1+¢+ro
and
= p+aqo
I1+¢+ry

by multiplying, we get

P+ Y +rd’ =p+qy
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V4 o+’ =p+qd

by rearranging the above equation by some algebra we get:

4 —¢) + (¥ — d) +7(* — ¢*) =0
=)+ W —0)+r(—9)(+¢)=0
we can divide the above equation by (1) — ¢), since ¢ # 1, then
g+1+rW+¢)=0
which implies that
—q—1
b=

which is a contradiction for that 1 and ¢ are both nonnegative.

Corollary 3.14. Eq.(3.4) posses no prime period two solution.

3.8 Analysis of Semicycles and Oscillation

Analysis of semicycles of the solution of Eq.(3.4) is a powerful tool for a de-
tailed understanding of the entire character of solutions.

Definition 3.15. Let {x,}>> _, be a solution of Eq.(3.3) and T be a posi-
tive equilibrium point. We now give the definitions of positive and negative
semicycle of a solution of Eq.(3.3) relative to the equilibrium point T

e A positive semicycle of a solution {z,}° _, of Eq.(3.3) consists of a
"string” of terms {x;,x;11, -, T}, all greater than or equal to the
equilibrium Z, with [ > —1 and m < oo such that

either l=—1, orl < —1land x;_1 <7

and
either m = 0o, or m < oo and Tp41 < T
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e A negative semicycle of a solution {z,}>° , of Eq.(3.3) consists of a
"string” of terms {x;,x;11, -+ ,Tm}, all less than the equilibrium 7z,
with [ > —1 and m < oo and such that

etther [=—1, orl < —1and x;_1 >

and
either m = 0o, or m < oo and Tpy1 > 7T

Definition 3.16. ( Oscillation )

1. A sequence {x,} is said to oscillate a bout zero or simply to oscillate
if the terms x, are neither eventually all positive nor eventually all
negative. Otherwise the sequence is called nonoscillatory. A sequence
is called strictly oscillatory if for ng, there exist ni,ny > ng such
that z,, z,, <O0.

2. A sequence , is said to oscillate about 7 if the sequence z,, — T
oscillates. The sequence z,, is called strictly oscillatory about 7 if
the sequence x,, — T is strictly oscillatory.

Analysis of Semicycles Based on Invariant Intervals
The aim of this part is to present the analysis of semicycles of solution

of Eq.(3.4) relative to equilibrium point § and based on invariant interval of
Eq.(3.4).

Let {y,}>2_, be a solution of Eq.(3.4). Then observe that the following
identities are true:

p—q

— T Yn—k
1 — q = (qr ‘” 3.12
Ynt1 —q = (q >[1+yn+ryn,k] (3.12)
il ar(q — 20 Yn + @r (Y-t — 250) + pr(q — Yn-r) (3.13)
it Ty qr(1+ yn + Yn—t) '

M(:gn - Q)
1 + yn+3)(1 + Yn+1 + ryn) + T(p + qYn+1

p—q
Un—Ynss = | )+qr(yn—q—r)yn+1+yn+ryi—p

(3.14)
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yons — = T= DT = y0) + 77T — i)
" L+ Yn + 7Yn—k

(3.15)

where
M = Ypi1Yn+3 + Ynt3 + Yns1 + TYnYn+3

so the proof of the following lemmas are straight forward consequence of
the above identities.

Lemma 3.17. Suppose that p > q(qr + 1) and let {y,}>_, be solutions of
Eq.(3.4), then the following statements are true:

~

. f for some N >0, yy_, < EL. Then yyy1 > q.
2. If for some N >0, yn_r = L. Then yn.1 =q.

3. If for some N >0, yn_i > =2, Then yni1 < q.

% |
Q

4. If for some N >0, ¢ < yn—y < pq;rq. Then g < yn41 < 1%.

9. If for some N 20, ¢ <yn-p, -+ yn—1,yn < £t Then q <y, < F1.
That is [q, B=2] is an invariant interval for Eq.(5.4).

qr
6. If for some N >0,y < yn_k, and y < yn. Then yni1 < 7.

7. If for some N >0,y > yn_x andy > yny. Then yni1 > 7.

8. qg<y< f’%.
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Proof. 1. If for some N > 0, yy_ < ’%. Then we can conclude that
yn+1 — ¢ > 0 using Eq.(3.12). Which implies that yy+1 > ¢.

2. If for some N > 0, yy_ = ’%. Then yyy1 — ¢ = 0 using Eq.(3.12),

which implies that yy1 = q.

3. If for some N > 0, yy_p > ]"Q;Tq. Then yy.1 — q < 0 using Eq.(3.12),

which implies that yyi1 < q.

4. If for some N > 0, ¢ < yny—j < pq;q, we can see that if yy_p < I%,

Then yyi1 > ¢ by (1). Similarly if yy_p > ¢, then yyy — &2 <0

qr
which implies that yyi1 < 5% using Eq.(3.13). Then we conclude that

bp—q
q <yYyn4+1 < et

5. We see in (4), that If for some N > 0, ¢ < ynv_ < L. Then ¢q <

qr
Yni1 < pq;q. Now we can see that if ¢ < yy_k, ..., yn—1,yny < EZ, then

qr”’
YN+1, YUN+2, - € (¢, B2) using Eq.(3.13), which implies that ¢ < y,, <

qr

pq;rq. That is [q, ’%] is invariant interval for Eq.(3.4).

6. If for some N > 0,y < yy_x, and §¥ < yy. Then using Eq.(3.15), we
see that yyi1 — 7 <0, i.e, ynyi1 < 7.

7. If for some N > 0, ¥ > yny_k, and ¥ > yy. Then using Eq.(3.15), we
see that yy11 —7 >0, 1., yn41 > 7.

8. Using (5), since [g, £_1] is invariant interval, then ¢ <7 < 2.

The following theorem is the extension of theorem(2.19).

Corollary 3.18. Every nontrivial and oscillatory solution of Eq.(3.4) which
lies in the interval [q, %] oscillates about the equilibrium point vy, with semi-

cycle of length at most k + 1.

Proof. Corollary(3.18) is extension of Theorem(??), where Eq.(3.4) is de-

creasing in both arguments in [qg, ’%]. Then every oscillatory solution of

Eq.(3.4) has a semicycle of length at most k + 1. H
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Lemma 3.19. Suppose that ¢ < p < q(qr + 1) and let {y,}>> _, be solution
of equation (3.4), then the following statements are true:

~

Proof.

. f for some N >0, yy_1 < &=

q—Tq. Then yni1 > q.

If for some N >0, yy_, = =2, Then ynyi1 = q.
If for some N >0, yy_, > E2. Then yyi1 < q.
If for some N >0, =1 < yy_p < q. Thenp <yYyni1 < (.

If for some N >0, P22 < yn_p, -+ s yn—1,yn < q. Then P2 <y, < q.
That is [E=1 o 1 q] is an mvamant interval for Eq.(3.4).

=4 7
p <y <gq.

1. If for some N > 0, yy_ < ’%. Then we can conclude that
yn+1 — q > 0 using Eq.(3.12). Which implies that yy41 > g.

If for some N > 0, yy_x = ’%. Then yyy1 — ¢ = 0 using Eq.(3.12),

which implies that yy1 = q.

If for some N > 0, yny_x > ’%. Then yyy1 — ¢ < 0 using Eq.(3.12),
which implies that yy1 < q.

If for some N > 0, 24 < yy_j < ¢, we can see that if yy_j > £24.
Then yni1 < ¢ by (1). Slmllarly if yv_r < g, then yyi1 — 22 > 0

qr
wh1ch implies that yy,1 > 22 using Eq.(3.13). Then we conclude that

qr I <yny1 <gq

. We see in (4), that If for some N > O P9 < yy_g < ¢q. Then 1 <

qr
ynvi1 < q. Now we can see that if p < yN ks YUN—1, YN < @, then

UN+1, YNt2, - € (B2 = 1. q) using Eq.(3. 13) which implies that p 1<y, <
q. That is =1 o 1. q] is invariant interval for Eq.(3.4).
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6. Using (5), since |g, %] is invariant interval, then ’% <7y <gq.
The following theorem is extension of theorem(2.20).

Corollary 3.20. Every nontrivial and oscillatory solution {y,}°_, of Eq.(3.4)

n=—=k
which lies in the interval [E=2, q] oscillates about the equilibrium point y, with

qr

semicycle of length at least k + 1.

Proof. Corollary(3.20) is extension of Theorem(??), where Eq.(3.4) is in-
creasing in x for each fixed y, and decreasing in y for each fixed z in the
interval [&2, g]. Then every oscillatory solution of Eq.(3.4) oscillates about
the equilibrium point ¥ with semicycle of length at least k + 1. O

Finally: we will discuss thoroughly the analysis of semicycles of the solu-
tion {y,}°° _, under the assumption that p = q(¢r + 1).

In this case Eq.(3.4) reduces to the following

q+7¢" +qyn
14 UYn + T"Yn—k

and the equilibrium point is § = ¢, then the identities(3.12) through
(3.15) reduces y,+1 — g, to

Yn+1 =

qr
el — q = — Yp— 3.16
Yn+1 — 4 1+ 4 + ronr (q Yy k‘) ( )

Furthermore, if gr < 1, then
lim y, =7. (3.17)
Remark

1. Identity (3.16) follows by straight forward computation.

2. Limit in (3.17) is a consequence of the fact that in this case gr € (0,1)
and Eq.(3.4) has no prime period two solution.
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Lemma 3.21. Suppose that p = q(qr + 1) and let {y,}>° . be solutions of
Eq.(3.4), then the following statements are true:

1. If for some N >0, ynv_r < q. Then yyi1 > q.
2. If for some N >0, yv_r = q. Then yn+1 = q.
3. If for some N >0, yn_r > q. Then yni1 < q.

Proof. 1. If for some N > 0, yny_ < g, then by substitute p = q(qr + 1)
in Eq.(3.12), we get yy+1 — ¢ > 0 which implies that yy41 > gq.

2. If for some N > 0, yy_r = ¢, then by substitute p = ¢(qr + 1) in
Eq.(3.12), we get yy+1 — ¢ = 0 which implies that yy41 = gq.

3. If for some N > 0, yy_ > ¢, then by substitute p = ¢(qr + 1) in
Eq.(3.12), we get yn+1 — ¢ < 0 which implies that yy1 < g.
O

Theorem 3.22. Suppose that p = q(qr+ 1) and let {y,}°°_, be a nontrivial
solution of Eq.(3.4), then {y,}>2_, oscillates about the equilibrium point q.

Proof. We notice that by using lemma(3.21) if yy_, < g then yy,1 > ¢, and
if yy_r > ¢ then yy41 < ¢, which means that the solution {y,}2 , oscillates
about the equilibrium point q. ]

Now assume that the solutions does not eventually lie in the invariant
interval.

Assume that p > q(gr + 1), let {y,}>>_, be a solution of Eq.(3.4) which
does not eventually lie in the interval I = [q, 1%], then it can be observed
that the solution oscillates about the equilibrium point relative to [g, 7%]
essentially in one of the following two ways:
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e k + 1 consecutive terms in (’%, o0), are followed by k£ + 1 consecutive

terms in (&2, 00), and so on. The solution never meets the interval

(¢, 21) "
) q’]" M

e There exists exactly k terms in (’-%,00) which is followed by k terms

in (¢, %) which is followed by k terms in (0, 1) which is followed by &
terms in (g, £%) which is followed by k terms in (?%, 00) and so on.

qr
The solution meets consecutively the intervals :

pP—q pP—q p—q, P—4q
. 00 0.1 00). - - -
7( qr ) )7 (Q7 q,r )7( ? )7((]7 q?” )7( qr 9 )7

in order with k terms per interval.

The situation is essentially the same relative to the interval (%2, q),
when ¢ < p < q(qr +1).
And the same thing is done when p = ¢(gr + 1).
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3.9 Global Asymptotic stability

The next results are about the global stability for the positive equilibrium of

Eq.(3.4).

Theorem 3.23. :[1] Let I = [a,b] be an interval of real numbers and assume
f:la,b] x [a,b] — |a, b

is continuous function satisfying the following properties

1. f(z,y)is non increasing in each of it’s arguments;

2. If (m, M) € [a,b] x [a,b] is a solution of the system

m = f(M, M)
M = f(m,m)
then m = M.
Then
Yn+1 = f(y'myn—k)?n - 07 17 e (318>

has a unique equilibrium Y € [a,b] and every solution of Eq.(3.18) con-
verges 1o .

Theorem 3.24. :[1] Let I = [a,b] be an interval of real numbers and assume
[+ la,b] x [a, 0] — [a, 0]

15 continuously function satisfying the following properties

1. f(x,y)is non decreasing in z for each y € [a,b] and f(x,y)is non in-
creasing in y for each x € [a,b]

2. If (m, M) € [a,b] X [a,b] is a solution of the system
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then m = M.

Then Eq.(3.18) has a unique equilibrium § € [a,b] and every solution of
FEq.(3.18) converges to 3.

Now we will apply these theorems on our equation.

Theorem 3.25. Assume that p > q(qr + 1), then the positive equilibrium of
Eq.(3.4) on the interval [q, B=2] is globally asymptotically stable.

qr

Proof. this proof can easily done depending on theorem (3.23).
Assume that p > ¢(¢r + 1) and consider the function

P +qzx

ey =Ty

First, note that f(z,y) on the interval [¢, £27] is non increasing function
in both of its arguments z, y.

Second, Let (m, M) € [a,b] X [a,b] is a solution of the system

f(m,m) =M and f(M,M) =m

then
 ptagm
14+ m+rm
and
p+qM

m= -———
1+M+rM
But we showed before that our equation has no periodic two solution,
then the only solution is m = M.
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Then both conditions of theorem(3.23) hold, therefore if 7 is an equilib-
rium point of Eq.(3.4), then every solution of Eq.(3.4) converges to 7 in the
interval [g, £1].

As 7 is asymptotically stable, then it is globally asymptotically stable on
g, 252

O

Theorem 3.26. Assume that ¢ < p < q(qr+1), then the positive equilibrium
of Eq.(3.4) on the interval [’%, q] is globally asymptotically stable.

Proof. This proof can be easily done depending on theorem (3.24).
Assume that ¢ < p < g(gr + 1) and consider the function

 ptaqx

First, note that f(z,y) on the interval [E=2 ¢| is nondecreasing function
qr
in x, and nonincreasing y.

Second, Let (m, M) € [a,b] X [a,b] is a solution of the system

f(m, M) =m and f(M,m)=M

then
o PEam
1l+m+rM
and
_ ptgM
14+ M+rm

But we showed before that our equation has no periodic two solution,
then the only solution is m = M.

Then both conditions of theorem (3.24) hold, then if 7 is an equilibrium
point of Eq.(3.4), then every solution of Eq.(3.4) converges to 7 in the Interval
(52 dl.
as? y is asymptotically stable, then it is globally asymptotically stable on
(24, q-

[]
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Theorem 3.27. Assume that p < q, then the positive equilibrium of Eq.(3.4)

0 (g—1)++/(g—1)>+4p

on the interval |0, 5 | is globally asymptotically stable.

Proof. This proof can be easily done depending on theorem(3.24).
Assume that p < ¢ and consider the function

P —+qx

ey =Ty

[O (q=1)++/(q—1)2+4p

5 | is nondecreas-

First, note that f(x,y) on the interval
ing function in x, and nonincreasing y.

Second, Let (m, M) € [a,b] x [a,b] is a solution of the system

f(m,M)=m and f(M,m) =M

then
 ptagm
14+ m+rM
and
_ ptagM
1+ M+rm

But we showed before that our equation has no periodic two solution,

then the only solution is m = M.
m
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3.10 Numerical Discussion

In this section, we will study the global stability of our equation numerically
based on some data and figures that we can get using MATLAB 6.5.

Example 3.1. Assume Eq.(3.2) holds. take k =3, p=4,r =2 and q = 1.
So the equation will be

44y,
1+yn+2yn73’

Yn+1 = n:071a27'“

We assumed that the initial points {xg, x1, T2, x3} all to be € (0,00) and are
{0.1,0.2,0.3,0.4}.

The theoretical positive equilibrium point will be 7 = 1.154700538.

Figure.1.  shows the behavior of the equilibrium point of the y,,1 =

T +yifé’;n_3. It shows that the equilibrium point 7y is globally asymptotically

stable, as we have shown theoretically.

Figure 1:plot of y(n+1)=(p+gy () (1 +y [+ (n-k)

—— k=3

B o T
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r-iteration



Table.1. shows that the numerically equilibrium point y = 1.1547.

X(m) | N| X(n) | N| X(n) | N | X(n)

0.1000 | 26 | 1.1458 | 51 | 1.1544 | 276 | 1.1547
0.2000 | 27 | 1.1378 | 52 | 1.1545 | 277 | 1.1547
0.3000 | 28 | 1.1422 | 53 | 1.1552 | 278 | 1.1547
0.4000 | 29 | 1.1780 | 54 | 1.1547 | 279 | 1.1547
2.7500 | 30 | 1.1585 | 55 | 1.1549 | 280 | 1.1547
1.6265 | 31 | 1.1634 | 56 | 1.1548 | 281 | 1.1547
1.7438 | 32 | 1.1609 | 57 | 1.1544 | 282 | 1.1547
1.6208 | 33 | 1.1426 | 58 | 1.1547 | 283 | 1.1547
0.6921 | 34 | 1.1532 | 59 | 1.1546 | 284 | 1.1547
0.9488 | 35 | 1.1503 | 60 | 1.1547 | 285 | 1.1547
0.9103 | 36 | 1.1516 | 61 | 1.1548 | 286 | 1.1547
0.9531 | 37 | 1.1611 | 62 | 1.1547 | 287 | 1.1547
1.4841 | 38 | 1.1553 | 63 | 1.1547 | 288 | 1.1547
1.2516 | 39 | 1.1570 | 64 | 1.1547 | 289 | 1.1547
1.2896 | 40 | 1.1562 | 65 | 1.1546 | 290 | 1.1547
1.2607 | 41 | 1.1513 | 66 | 1.1547 | 291 | 1.1547
1.0061 | 42 | 1.1545 | 67 | 1.1547 | 292 | 1.1547
1.1102 | 43 | 1.1535 | 68 | 1.1547 | 293 | 1.1547
1.0897 | 44 | 1.1540 | 69 | 1.1547 | 294 | 1.1547
1.1038 | 45 | 1.1565 | 70 | 1.1547 | 295 | 1.1547
1.2400 | 46 | 1.1547 | 71 | 1.1547 | 296 | 1.1547
1.1748 | 47 | 1.1553 | 72 | 1.1547 | 297 | 1.1547
1.1885 | 48 | 1.1551 | 73 | 1.1547 | 298 | 1.1547
1.1803 | 49 | 1.1538 | 74 | 1.1547 | 299 | 1.1547
1.1116 | 50 | 1.1547 | 75 | 1.1547 | 300 | 1.1547

H
O O 00~ U W A

DN DN N DN = = = = s
Gl W N O WO O Ui Wi =

Table 1: Solution of DE 4,1 = Hﬁ%
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Example 3.2. Assume Eq.(5.2) holds. take k =3, p=3,r =4 and ¢ = 2.
So the equation will be

3+ 2y,
1+ Yn + 4yn—37

Yn+1 = n:071727'”

We assumed that the initial points {xo, x1,x2,x3} all to be € (0,00) and are
{0.1,0.2,0.3,0.4}.

The theoretical positive equilibrium point will be ¥ = 0.881024967.

Figure.2.  shows the behavior of the equilibrium point of the y,,1 =
%. Which shows that the equilibrium point y is globally asymptoti-
cally stable, as we have shown theoretically.

Figure 2:plot of y{n+1)=(p-+o ™y ({1 +y )+ (k)
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Table.2. shows that the numerically equilibrium point y = 0.8810.

X(m) | N| X(n) | N| X(n) | N | X(n)
0.1000 | 26 | 0.7938 | 51 | 0.8770 | 276 | 0.8810
0.2000 | 27 | 0.7283 | 52 | 0.8540 | 277 | 0.8810
0.3000 | 28 | 0.7151 | 53 | 0.8475 | 278 | 0.8810
0.4000 | 29 | 0.8071 | 54 | 0.8586 | 279 | 0.8810
2.1111 | 30 | 0.9261 | 55 | 0.8790 | 280 | 0.8810
1.8466 | 31 | 1.0027 | 56 | 0.8986 | 281 | 0.8810
1.6540 | 32 | 1.0292 | 57 | 0.9071 | 282 | 0.8810
1.4828 | 33 | 0.9621 | 58 | 0.9013 | 283 | 0.8810
0.5459 | 34 | 0.8690 | 59 | 0.8865 | 284 | 0.8810
0.4581 | 35 | 0.8058 | 60 | 0.8709 | 285 | 0.8810
0.4850 | 36 | 0.7786 | 61 | 0.8623 | 286 | 0.8810
0.5353 | 37 | 0.8099 | 62 | 0.8641 | 287 | 0.8810
1.0945 | 38 | 0.8740 | 63 | 0.8739 | 288 | 0.8810
1.3214 | 39 | 0.9315 | 64 | 0.8862 | 289 | 0.8810
1.3241 | 40 | 0.9637 | 65 | 0.8945 | 290 | 0.8810
1.2649 | 41 | 0.9470 | 66 | 0.8950 | 291 | 0.8810
0.8324 | 421 0.8992 | 67 | 0.8886 | 292 | 0.8810
0.6554 | 43 | 0.8530 | 68 | 0.8792 | 293 | 0.8810
0.6201 | 44 | 0.8245 | 69 | 0.8719 | 294 | 0.8810
0.6348 | 45 | 0.8283 | 70 | 0.8701 | 295 | 0.8810
0.8600 | 46 | 0.8584 | 71 | 0.8739 | 296 | 0.8810
1.0532 | 47 | 0.8949 | 72 | 0.8807 | 297 | 0.8810
1.1264 | 48 | 0.9224 | 73 | 0.8869 | 298 | 0.8810
1.1259 | 49 | 0.9253 | 74 | 0.8894 | 299 | 0.8810
0.9435 | 50 | 0.9052 | 75 | 0.8874 | 300 | 0.8810

—_
O O 00~ U W A

DN DN N DN = = = = s
Gl W N O WO O Ui Wi =

Table 2: Solution of DE y,,1 = %
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Example 3.3. Assume Eq.(5.2) holds. take k =3, p=4,r=1 and ¢ =5.
So the equation will be

4 4+ 5y,

' n=0,1,2,-
1+yn+yn—3

Yn+1 =

We assumed that the initial points {xo, x1, 2, x3} all to be € (0,00) and are
{0.1,0.2,0.3,0.4}.

The theoretical positive equilibrium point will be ¥ = 2.732050808.

Figure.3.  shows the behavior of the equilibrium point of the y,,1 =
%. Which shows that the equilibrium point y is globally asymptot-
wcally stable, as we have shown theoretically.

Figure 3:plat of yin+11=(pra®y (n01 H(ni+ry nek)

5_-___-___-1 __________ S Y i i e e R e e s 0 o
: H —— k=3
L B T p=4,r=1, =5
- S R e el e e e
- SR O SUURE SR | U SRR U
L N TTNENEN DO SN, SRR
D; i i i i i i i
0 50 100 150 200 250 300 350

n-iteration



Table.3. shows that the numerically equilibrium point y = 2.7321.

X(n)

N

X(n)

N

X(n)

N

X(n)

—_
O O 00~ U W A

DN DN N DN = = = = s
Gl W N O WO O Ui Wi =

0.1000
0.2000
0.3000
0.4000
4.0000
4.6154
4.5774
4.4981
2.7890
2.1352
1.9029
1.8260
2.3384
2.8668
3.1777
3.3127
3.0918
2.7964
2.5784
2.4513
2.4845
2.6147
2.7569
2.8647
2.8859

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

2.8351
2.7572
2.6859
2.6522
2.6607
2.6961
2.7390
2.7687
2.7753
2.7624
2.7397
2.7193
2.7094
2.7113
2.7215
2.7337
2.7422
2.7444
2.7408
2.7344
2.7286
2.7256
2.7261
2.7290
2.7324

o1
52
53
o4
%)
56
o7
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

2.7349
2.7356
2.7346
2.7328
2.7311
2.7302
2.7303
2.7311
2.7321
2.7328
2.7331
2.7328
2.7323
2.7318
2.7315
2.7316
2.7318
2.7321
2.7323
2.7323
2.7323
2.7321
2.7320
2.7319
2.7319

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321
2.7321

Table 3: Solution of DE vy, .1 =

1+yn+yn—3
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4 Special Cases o« 3 A B(C =0

In this chapter we examine the character of solution of the equation

o+ Bx,
A+ Bx, + Cx,_,

Tyl = (41)

where one or more of the parameters in Eq.(4.1)are zero.

Observe that some of these equations are meaningless like the case when
the parameters in the denominator are zero, and some of them are quite in-
teresting and have been studied by many researchers.

If we assume the parameters a, 3, A, B, C to be nonnegative, then Eq.(4.1)
contains, as special cases, 21 difference equations with positive parameters.
One of them is Eq.(4.1). Of the remaining 20 equations, some equations are
trivial, Linear, or reducible to linear, or of the Riccati type

ay, +0b
n = 7 :0717"'
Yn+1 cym + d n

with nonnegative parameters a, b, ¢, d which itself is reducible to a linear
equation by a well known change of variables.

Now we will mention the 20 equations with some details about each one.

4.1 One parameter = 0

In this section we examine the character of solution of Eq.(4.1) where one
parameter in Eq.(4.1) = 0. There are five such equations, namely:

a+ B,
1 = —————,n=0,1,2... 4.2
Tnt1 A+ Bz, n ( )
a+ Bz,
= T = 0,1,2... 4.3
Tt A—i‘C‘Tn,k " ( )
a+ Bxy,

Tptp1 = n=0,1,2.. (4.4)

Bz, +Czp_)’
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«
= n=012. 45
Tl A+ Bz, +Cx,_i " (4:5)
Trg1 = Bz n=0,1,2.. (4.6)

A+ Bz, + Czx,_}

where the parameters «, 3, A, B, C' are posititve real numbers and the initial
conditions x_j,r_gi1, - ,xg are arbitrary nonnegative real numbers.

The Eq.(4.2) was investigated in [14], which is in fact a Riccati equation.

The change of variables

A

Tn = FYn

C
reduces Eq.(4.3) to the difference equation

P+ qYn

1 = ———,n=0,1,--- 4.7
Yn+1 1+ v s ( )
where
aC J I}
= — an = —
p 12 q A

Eq.(4.7) has a unique positive equilibrium point 7 given by

(q—1)+/(g—1)2+4p
2

g:

The Eq.(4.7) was investigated in [6]. The authors studied the global stabil-
ity, boundedness of positive solutions, and character of semicycles of Eq.(4.7).

The change of variables

B
Tn = ZYn

B
reduces Eq.(4.4) to the difference equation

Yop1 = — LI 01,2, (4.8)

Yn T QYn—k

where
aB
p= 5 and q = B



I0)

with p,q € (0,00) and the initial conditions y_y, - - - , yo are nonnegative real
numbers. Eq.(4.8) was investigated in [5]. They have concentrated on in-
variant intervals, the character of semicycles, the global stability, and the
boundedness.

The change of variables
@

Ty = Zyn
reduces the equation Eq.(4.5) to the difference equation
! 0,1,2 (4.9)
Yn = yn=U, 1,4, :
T Y+ Yok
where
aB aC
P=p 1=

The unique positive equilibrium point of Eq.(4.9) is

A ITI0T D

2(p+q)

y:

we can show easily that this equilibrium point is locally asymptotically
stable, for all values of parameters, and that Eq.(4.9) has no prime period
two solutions.

By applying linearized stability and theorem(2.13), we can also show eas-
ily that this positive equilibrium point of Eq.(4.9) is globally asymptotically
stable.

The change of variables
A

Tn = FYn

C
reduces Eq.(4.6) to the difference equation

Yn
L4 pyn + qYn—r’

Ynil = n=0,1,--- (4.10)

where

B B
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Eq.(4.10) always has zero as an equilibrium point, and when p > 1, it
also has the unique positive equilibrium point

The following results are a straight forward consequence of the theorem(2.21)
of the global asymptotic stability of the zero equilibrium point and theorem(2.22).

Theorem 4.1. Assume p < 1, then the zero equilibrium of Eq.(4.10) is glob-
ally asymptotically stable.

Theorem 4.2. Assume that Yn_g, Yn—k+1, " s Y—-1,% € (0,00) and p > 1
then the positive equilibrium of Eq.(4.10) is globally asymptotically stable.



4.2 Two parameters are zero
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In this section we examine the character of solutions of Eq.(4.1) where two
parameters in Eq.(4.1) are zero. There are nine such equations, namely:

Tt = ﬁan’n —0,1,2...
Top1 = A++M,n ~0,1,2..
Tl = m,n —0,1,2...
Tptl = #gxn,n =0,1,2...
Tpt1 = %,n =0,1,2...
Ty = %,n —0,1,2...
Tpg1 = %ﬁxn,n =0,1,2...
Tpt1 = %,n =0,1,2...
Tptl = %,n =0,1,2...

(4.11)
(4.12)

(4.13)
(4.14)
(4.15)
(4.16)

(4.17)

(4.18)

(4.19)

where the parameters «, 3, A, B, C' are positive real numbers and the ini-
tial conditions x_j,x_ky1,- - ,To are arbitrary nonnegative real numbers.

Two of these equations, namely Eq.(4.11) and Eq.(4.14) are Riccati- type

difference equation.

Its interesting to note that the change of variables

1
Ty = —

Yn

reduces the Riccati equation Eq.(4.14) to the linear equation

A B
yn-‘rlzgyn—{_ﬁv nzovla"'
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for which the global behavior of solutions is easily derived.

Eq.(4.12) is essentially Riccati equation. Indeed if {z,} is a solution of
Eq.(4.12), then the subsequences {z2,_1} and {z2,} satisfy the Riccati equa-
tion of the form of Eq.(4.11).

Now consider the equation

«

Tpp1 = ——————
" Bz, + Czp_i

The Eq.(4.13) which by change of variables
Va

Tp = —
Yn
reduces to the difference equation
B C
Yni1 = — + ,n=0,1,2,.. (4.20)
Yn Yn—k
where the initial conditions y_g,--- , 9o are arbitrary nonnegative real num-

bers.

The only positive equilibrium point is y = vB+C. When k£ = 1,
Eq.(4.20) was investigated in [14]. It was shown that every solution is
bounded, it also shown that the equilibrium point

y=vB+C
is globally asymptotically stable.

In this monograph, we investigate the difference Eq.(4.20) when &k €

{2,3,...}.
Theorem 4.3. Every solution of Eq.(4.20) is bounded.

Proof. Assume for the sake of contradiction that there exists a solution
{yn}52 _,. which is neither bounded from above nor from below. That is

lim sup y, = oo and lim inf y, =0

n—oo n—oo
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then clearly, we can find indices i and j with

1<1<y
such that
Yi >y >y forallne{—k, ..,j—1}
Hence
B C B+C
Y; = + >
Yji-1  Yj-k—1 Yi
and
B C B+C
Yi = + <
Yi—1 Yi—k—1 Y;j
that is

B+C’<yiyj<B+C’

which is impossible.

To investigate the stability of Eq.(4.20), let f(x,y) = % + %

Theorem 4.4. The equilibrium point y = /B + C s unstable when k 1is
even.

Proof. The linearized equation of Eq.(4.20) about the equilibrium point
7=vVB+C

1s
B C
Zp4l = — Zn— S5
1 B+C B+C

and its characteristic equation is

Zn_k, n=0,1,2, ..

B
\F 4 ¢

/\k—i—l _
*5rc” TBrC

0

Then the proof follows immediately from the linearized stability theorem(2.12).
m
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Before we examine the existence of two cycles of Eq.(4.20), it is worthwhile
to mention that when C' = 1 and k = 2, it was shown by R.Devault and
G.Ladas and S.W. Schultz in [8], that every positive solution of the difference

equation
B 1
Ynr1 =+
Yn Yn—2

converges to a period two solution.

Theorem 4.5. The Eq.(4.20) has prime period two solution if and only if k
1S even.

Proof. Let
U D W

be a period two solution of the Eq.(4.20), then
e If k is odd, then

B C B C
(I)—E—Faandﬁb—g‘i‘a
thus
¢=1
which is contradiction.
e If k is even, then
B C B C
CI)—E—FEand@/)—E‘FE
which implies that
oy =B+C

and the period two solution must be of the form

B+C | B+C

ey D, 5 , O, ranlis

which completes the proof.
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Theorem 4.6. Let {y,}>> , be a solution of Eq.(4.20). Then the following
statements are true:

1. Suppose that B+C > 1 and assume that for some N > 0, yn_g, ..., YN—1, YN €
[1,B+ C]. Theny, € [1,B+ C] for alln > N.

2. Suppose that B+C < 1 and assume that for some N > 0, Yyn_k, ..., YnN—1, YN €
B+ C,1]. Then vy, € [B+ C,1] for alln > N.

3. Suppose that B > C' and assume that for some N > 0,yn_g, ..., UN—1, YN €
[C., 2 +1]. Theny, €[C,Z+1] foralln> N.

4. Suppose that B < C'" and assume that for some N > 0,yn_p, .-, YN_1, YN €
(B, +1]. Theny, € [B,% +1] for alln > N.

Proof. The proof of this theorem is based on monotonic character.

1. Assume that for some N > 0, yny_x,...,yn—_1,yn € [1, B+ C|. Then

B C
YnNt1 = — + <B+C
YN YN-k
and
B C B C
Ynt1 = — + > +

=1
yn  yYn-r B+C B+C

2. Assume that for some N > 0, yn_k, ..., yn—1,yn € [B + C,1]. Then

_B+ C < B n C _1
yNH_?JN yv.x ~ B+C  B+C
and
C
YNyl = — + >B+C
Yn  YN-k

3. Assume that for some N > 0, yn_k, ..., yn—1,yn € [C, g + 1]. Then

B, C _B C_B
= T n S C O C

and
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4. Assume that for some N >0, ynv_g, ..., yn—1,Yn € [B, % + 1]. Then

B C B C C
< -

=— 4= 1
YN+1 ?/N+yN—k: _B+B B+
and
C B C
Ynyr = —+ > 5o tse =B

YN YN—k 5 5

The proof is complete.

[]

Theorem 4.7. Let k be odd, then y = /B + C' is globally asymptotically
stable equilibrium point of Eq.(4.20).

Proof. For u,v € (0,00), set

B C
f(UaU):ZﬂL;

Then f : (0,00)x(0,00) — (0, 00) is continuous function and is nonincreasing
in both its argument. Let (m, M) € (0, 00) is a solution of the system

m = f(M, M) and M = f(m,m)

then m = M when k is odd. By using Theorem(2.18), y = vB +C is
globally asymptotically stable equilibrium point of Eq.(4.20). This completes
the proof. O

Finally, we introduce the analysis od semicycles of Eq.(4.20) in the fol-
lowing theorem.

Theorem 4.8. Every oscillatory solution of Eq.(4.20) has semicycle of length
at most k

Proof. The proof follows from theorem (2.19) by observing that the function
flu,v) = % + % is decreasing in both its arguments.
Thus the proof is complete.
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The change of variables

Ty = —=

C
reduces Eq.(4.15) to Pielou’s Difference Equation

pyn
Yn+1 = Tyn—k (4.21)
where
_8
P=7
when
p<1

It follows from Eq.(4.21) that every solution converges to 0.
Furthermore, 0 is locally asymptotically stable when p < 1 and unstable
when p > 1.

When
p>1

the zero equilibrium of Eq.(4.21) is unstable and possesses the unique positive
equilibrium

y=p—1
which is locally asymptotically stable.

We can obtain from the above the following theorem:

Theorem 4.9. 1. Assume
p<1

Then the zero equilibrium of Eq.(4.21) is globally asymptotically stable.

2. Assume yo € (0,00) and
p>1

Then the positive equilibrium
y=p—1
of Eq.(4.21) is globally asymptotically stable.



84

The Eq.(4.16) which is by the change of variables

Ty = B
" Cya
reduces it to the difference equation
Yn
Yni1 = P+ ,n=0,1,2,.. (4.22)
Yn—k
where B
P=—=
C
and the initial conditions y_g,---,yo are nonnegative real numbers. The

Eq.(4.22) was studied in [2].

Eq.(4.17) is linear .

Eq.(4.18) is a Riccati equation, its solved explicitly to determine the char-
acter of its solution in [10], they showed that the equilibrium point is globally

asymptotically stable.

Eq.(4.19) which by the change of variables

Ty = ﬁy

n C n

reduces to the difference equation
P+ yn
Yn+1 = (423)
Yn—k

where o

o

P = 7;; S (0,00)

and the initial conditions y_, - - - , yo are arbitrary nonnegative real numbers.

The unique positive equilibrium point is

1+v1+4+4p
2

g =
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The linearized equation about equilibrium point 7 is

Zn+ Zpn—i =0

2
Zppl — T ——
s VIt D

and its characteristic equation is:

AR kFi1-0

2
— )
1+VI+4p

Remark: For k = 1, the Eq.(4.19) is well known in literature of rational
difference equations as lyness’ Equation [14].

1++/1+4p

5 18 unstable.

Theorem 4.10. The equilibrium point y =

Proof. The proof follow immediately by theorem(2.14).
O

Theorem 4.11. The Eq.(4.23) has no positive prime period two solution.

Proof. Assume for the sake of contradiction that there exists a solution of
prime period two

A ¢7z/}7 ¢71/}7 te

where ¢ and v are positive and distinct.

e If k is odd. Then we have

Pty
= 4.24
b= (4.24)
and L é
p
=<7 4.25
V=" (4.25)
from Eq.(4.24), we get
¢ =p+ (4.26)
and from Eq.(4.25), we get
VP =p+¢ (4.27)
from Eq.(4.26)and Eq.(4.27), we get
o+ =—1

which is a contradiction.
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e If k is even. Then we have

P+
b= 4.28
" (4.28)
and
p- Pt (4.29)
¢
from Eq.(4.28), we get
P =p+ (4.30)
and from Eq.(4.29), we get
P =p+o (4.31)
from Eq.(4.30)and Eq.(4.31), we get
pto=p+i
hence
V=09
which is a contradiction.
This completes the proof. n

Theorem 4.12. The equilibrium point § = “2V1 Vzlﬂp of Eq.(4.23) is globally
asymptotically stable.

Proof. For u,v € (0,00), set f(u,v) = 2% Then
f:(0,00) x (0, 00) — (0, 00)

is continuous function and is nondecreasing in « and nonincreasing in v. Let
(m, M) € (0,00) is a solution of the system

m = f(m, M) and M = f(M,m)

Then
ptm=p+M

Hence
m=M
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Then by using theorem(3.24),

1+v1+4p

y: 2

is globally asymptotically stable equilibrium point of Eq.(4.23).
This completes the proof. n

Theorem 4.13. FEvery oscillatory solution of Eq.(4.23) has semisycle of
length at least k + 1.

Proof. The proof follows immediately from theorem(2.20), by observing that
the function f(x,y) = ’? is increasing in x and decreasing in y. The proof
is complete. O

4.3 Three Parameters are Zero

In this section we examine the character of solution of Eq. (4.1) where three
parameters in Eq.(4.1) are zero. There are 6 such equations, namely:

Tl = %, n=012. (4.32)
Tl = Bi, n=0,1,2.. (4.33)
(6%
= n=0,1,2.. 4.34
Tp41 Canr n ( )
Tl = %, n=01,2. (4.35)
By,

Tnt1 = B—xn, n = O, ]_,2 (436)
Trg1 = Cix”k, n=0,1,2.. (4.37)

Eq.(4.32) and Eq.(4.36) both are trivial, since both of them are constants.

Eq.(4.33) was studied in [14], G.LADAS showed that every solution of
Eq.(4.33) is periodic with period two.
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Eq.(4.34) has nontrivial solution, and every solution is periodic with pe-
riod 2(k + 1). Eq.(4.35) is a linear difference equation.

Finally, Eq.(4.37), which using the change of variables,

Tp = ﬁy
n C n
can be reduced to the difference equation
Yn
Yn+1 = (438>
Yn—k

When k = 1, every solution of Eq.(4.38) is periodic with period 6, and its

solution is:
i) 1 1 T_1

*,T-1, o, ) ) ) )
r_1 1 Ty X
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5 The Matlab Code 6.5

Birzeit University
Muna Abu Al-Halaweh , (1075342)
Professor: Mohammad Saleh

Matlab code for the fixed point graph
clear all

dt=0.01;

a=1,;

b=4;

n=(b-a)/dt;

t=a:dt:b;

for i=1:n+1

y(i) = t(1)? — 4 * t(z) + 6;

end

plot(t,y,t,t) grid on title("the equilibrium points for f(z) = 2 — 4z + 6').

Matlab code for the cobweb diagram for some i {Figures A and
B}

clear all

m= input('insert the value of m=");

x(1)=input(’give initial value x(0) to find he following iteration=")
dt=0.01;

a=0;

b=1;

n=(b-a)/dt;

t=a:dt:b;

for i=1:n+1

y(1)= m*t(i)*(1-t(i));

end grid on plot(t,y,t,t)

number=20;
hold on
for i=1:number
(1) = mx(i)*(1-x(0);
line([x(i) x(i+1)],[ x(i+1) x(i+1)])
tine([x(i) x(i)],[ x(i) x(i+1))
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end

"n x(n)’

i=1;

[0 z(d)]

for i=2:number
if(x(i)==x(i-1))
break

end

[0 z(d)]

end

Matlab code for a general solution of the rational difference equa-
tion of order k, this program solves the equation:

Yn+1l = (p+ q*Yn )/( 1+ Yn+r*Yn-k)
function ratdiff;

k=input(’enter the value of the positive integer k = 7);
p=input(’enter the value of the positive parameter p =
q=input(’enter the value of the positive parameter q =
r=input(’enter the value of the positive parameter r = ’);

);
;),

Y

solution =ddifkk(k,p,q,r);

disp(* ")
disp(” Table ")
disp(’ )

disp("The solution x(n) is given in the following table : )
d=[solution(1:25,:),solution(26:50,:),solution(51:75,:),solution(276:300,:)];

disp(’ )
disp(’ 1 x(u) 1 x(n) 1 x(n) n x(n) disp(’

_’)
disp(d)
fixedpoint=(((¢ — 1) + sqrt((¢ = )* + 4 xpx (r+1))) /(2% (r + 1)));
fprintf(*fixedpoint =function plotandeval=ddifkk(k,p,q,r);

for i=1:k+1;
x(i)=input(’enter the value of the positive initial condition x=");
end

for n=k-+1:300;



X(1(11+1)=(p+q*><(n))/ (I+x(n)+r*x(n-k));

t=1:301;
plotandeval=[t;x]’;
grid on

hold on

t=1:301;

plot(t,x,’b.-");

xlabel("n-iteration’);

ylabel("Y (n)’);

title("Figure :plot of y(n+1)=(p+q*y(n))/(14+y(n)+r*y(n-k)’);
pl=strcat(’k= ’num2str(k));

p2=strcat('p= ’;num2str(p),’, r= ,num2str(r),’, q= ',num2str(q));
legend(p1,p2);

92
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